# American Institute of Mathematical Sciences

• Previous Article
Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains
• DCDS Home
• This Issue
• Next Article
Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems
April  2012, 32(4): 1421-1434. doi: 10.3934/dcds.2012.32.1421

## Dominated splitting and Pesin's entropy formula

 1 LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China 2 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Received  May 2010 Revised  September 2011 Published  October 2011

Let $M$ be a compact manifold and $f:\,M\rightarrow M$ be a $C^1$ diffeomorphism on $M$. If $\mu$ is an $f$-invariant probability measure which is absolutely continuous relative to Lebesgue measure and for $\mu$ $a.\,\,e.\,\,x\in M,$ there is a dominated splitting $T_{orb(x)}M=E\oplus F$ on its orbit $orb(x)$, then we give an estimation through Lyapunov characteristic exponents from below in Pesin's entropy formula, i.e., the metric entropy $h_\mu(f)$ satisfies $$h_{\mu}(f)\geq\int \chi(x)d\mu,$$ where $\chi(x)=\sum_{i=1}^{dim\,F(x)}\lambda_i(x)$ and $\lambda_1(x)\geq\lambda_2(x)\geq\cdots\geq\lambda_{dim\,M}(x)$ are the Lyapunov exponents at $x$ with respect to $\mu.$
Consequently, we obtain that Pesin's entropy formula always holds for (1) volume-preserving Anosov diffeomorphisms, (2) volume-preserving partially hyperbolic diffeomorphisms with one-dimensional center bundle, (3) volume-preserving diffeomorphisms far away from homoclinic tangency, and (4) generic volume-preserving diffeomorphisms.
Citation: Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421
##### References:
 [1] Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005). Google Scholar [2] L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007). Google Scholar [3] J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar [4] F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203. Google Scholar [5] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328. Google Scholar [6] P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197. Google Scholar [7] P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694. Google Scholar [8] R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95. Google Scholar [9] R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987). Google Scholar [10] V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197. Google Scholar [11] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar [12] D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar [13] A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057. Google Scholar [14] P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001). Google Scholar [15] J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, (). Google Scholar

show all references

##### References:
 [1] Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005). Google Scholar [2] L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007). Google Scholar [3] J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar [4] F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203. Google Scholar [5] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328. Google Scholar [6] P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197. Google Scholar [7] P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694. Google Scholar [8] R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95. Google Scholar [9] R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987). Google Scholar [10] V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197. Google Scholar [11] Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar [12] D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar [13] A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057. Google Scholar [14] P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001). Google Scholar [15] J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, (). Google Scholar
 [1] Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 [2] Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087 [3] Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 [4] Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219 [5] Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367 [6] Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195 [7] Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433 [8] Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063 [9] Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205 [10] Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003 [11] Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 [12] Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215 [13] Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255 [14] Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555 [15] Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479 [16] Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017 [17] Miroslav Bulíček, Annegret Glitzky, Matthias Liero. Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 697-713. doi: 10.3934/dcdss.2017035 [18] Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91 [19] Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957 [20] Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

2018 Impact Factor: 1.143