• Previous Article
    Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains
  • DCDS Home
  • This Issue
  • Next Article
    Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems
April  2012, 32(4): 1421-1434. doi: 10.3934/dcds.2012.32.1421

Dominated splitting and Pesin's entropy formula

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Received  May 2010 Revised  September 2011 Published  October 2011

Let $M$ be a compact manifold and $f:\,M\rightarrow M$ be a $C^1$ diffeomorphism on $M$. If $\mu$ is an $f$-invariant probability measure which is absolutely continuous relative to Lebesgue measure and for $\mu$ $a.\,\,e.\,\,x\in M,$ there is a dominated splitting $T_{orb(x)}M=E\oplus F$ on its orbit $orb(x)$, then we give an estimation through Lyapunov characteristic exponents from below in Pesin's entropy formula, i.e., the metric entropy $h_\mu(f)$ satisfies $$h_{\mu}(f)\geq\int \chi(x)d\mu,$$ where $\chi(x)=\sum_{i=1}^{dim\,F(x)}\lambda_i(x)$ and $\lambda_1(x)\geq\lambda_2(x)\geq\cdots\geq\lambda_{dim\,M}(x)$ are the Lyapunov exponents at $x$ with respect to $\mu.$
    Consequently, we obtain that Pesin's entropy formula always holds for (1) volume-preserving Anosov diffeomorphisms, (2) volume-preserving partially hyperbolic diffeomorphisms with one-dimensional center bundle, (3) volume-preserving diffeomorphisms far away from homoclinic tangency, and (4) generic volume-preserving diffeomorphisms.
Citation: Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421
References:
[1]

Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005).

[2]

L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007).

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423.

[4]

F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203.

[5]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328.

[6]

P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197.

[7]

P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694.

[8]

R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95.

[9]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).

[10]

V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197.

[11]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639.

[12]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795.

[13]

A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057.

[14]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001).

[15]

J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, ().

show all references

References:
[1]

Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005).

[2]

L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007).

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423.

[4]

F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203.

[5]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328.

[6]

P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197.

[7]

P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694.

[8]

R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95.

[9]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).

[10]

V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197.

[11]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639.

[12]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795.

[13]

A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057.

[14]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001).

[15]

J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, ().

[1]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[2]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[3]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[4]

Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219

[5]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[6]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[7]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[8]

Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063

[9]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

[10]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[13]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[14]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[15]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[16]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[17]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[18]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[19]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[20]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]