April  2012, 32(4): 1095-1124. doi: 10.3934/dcds.2012.32.1095

A convex-concave elliptic problem with a parameter on the boundary condition

1. 

Dpto. de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain

3. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 – La Laguna, Spain

Received  September 2010 Revised  July 2011 Published  October 2011

In this paper we study existence and multiplicity of nonnegative solutions to $$ \begin{equation} \left\{\begin{array}{ll} \Delta u = u^p + u^q \qquad & \mbox{in }\Omega, \\ \frac{\partial u }{\partial \nu} =\lambda u \qquad & \mbox{on }\partial \Omega. \end{array}\right. \end{equation} $$ Here $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $\nu$ stands for the outward unit normal and $p$, $q$ are in the convex-concave case, that is $0 < q < 1 < p$. We prove that there exists $\Lambda^* >0$ such that there are no nonnegative solutions for $\lambda < \Lambda^*$, and there is a maximal nonnegative solution for $\lambda \ge \Lambda^{*}$. If $\lambda$ is large enough, then there exist at least two nonnegative solutions. We also study the asymptotic behavior of solutions when $\lambda\to \infty$ and the occurrence of dead cores. In the particular case where $\Omega$ is the unit ball of $\mathbb{R}^N$ we show exact multiplicity of radial nonnegative solutions when $\lambda$ is large enough, and also the existence of nonradial nonnegative solutions.
Citation: J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095
References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519. doi: 10.1006/jfan.1994.1078. Google Scholar

[2]

A. Ambrosetti, J. García-Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations,, J. Funct. Anal., 137 (1996), 219. doi: 10.1006/jfan.1996.0045. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

D. Arcoya and J. D. Rossi, Antimaximum principle for quasilinear problems,, Adv. Diff. Eqns., 9 (2004), 1185. Google Scholar

[5]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225. Google Scholar

[6]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity,, J. Diff. Eqns., 246 (2009), 2055. doi: 10.1016/j.jde.2008.09.002. Google Scholar

[7]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour,, J. Anal. Math., 58 (1992), 9. doi: 10.1007/BF02790355. Google Scholar

[8]

F. Charro, E. Colorado and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side,, J. Diff. Eqns., 246 (2009), 4221. doi: 10.1016/j.jde.2009.01.013. Google Scholar

[9]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions,, J. Funct. Anal., 199 (2003), 468. doi: 10.1016/S0022-1236(02)00101-5. Google Scholar

[10]

M. Del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains,, Comm. Partial Differential Equations, 26 (2001), 2189. Google Scholar

[11]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877. doi: 10.2307/2001562. Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Some results about existence of a second positive solution in a quasilinear critical problem,, Indiana Univ. Math. J., 43 (1994), 941. doi: 10.1512/iumj.1994.43.43041. Google Scholar

[13]

J. García Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition,, J. Diff. Eqns., 198 (2004), 91. Google Scholar

[14]

J. García-Melián, Uniqueness of positive solutions for a boundary blow-up problem,, J. Math. Anal. Appl., 360 (2009), 530. doi: 10.1016/j.jmaa.2009.06.077. Google Scholar

[15]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. I,, NoDEA Nonlinear Differential Equations and Applications, 14 (2007), 499. Google Scholar

[16]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. II,, Proc. London Math. Soc. (3), 94 (2007), 1. Google Scholar

[17]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Contemp. Math., 11 (2009), 585. doi: 10.1142/S0219199709003508. Google Scholar

[18]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, An elliptic system with bifurcation parameters on the boundary condition,, J. Diff. Eqns., 247 (2009), 779. Google Scholar

[19]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions,, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29 (2010), 451. Google Scholar

[20]

J. García-Melián and J. Sabina de Lis, Uniqueness to quasilinear problems for the p-Laplacian in radially symmetric domains,, Nonlinear Anal. Ser. A: Theory Methods, 43 (2001), 803. Google Scholar

[21]

J. García-Melián and J. Sabina de Lis, Remarks on large solutions,, in, (2005), 31. Google Scholar

[22]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321. Google Scholar

[23]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964). Google Scholar

[24]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., 65 (1986). Google Scholar

[26]

W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian,, J. Inequal. Appl., 1 (1997), 47. doi: 10.1155/S1025583497000040. Google Scholar

[27]

J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem,, in, (2005), 311. Google Scholar

show all references

References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519. doi: 10.1006/jfan.1994.1078. Google Scholar

[2]

A. Ambrosetti, J. García-Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations,, J. Funct. Anal., 137 (1996), 219. doi: 10.1006/jfan.1996.0045. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

D. Arcoya and J. D. Rossi, Antimaximum principle for quasilinear problems,, Adv. Diff. Eqns., 9 (2004), 1185. Google Scholar

[5]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225. Google Scholar

[6]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity,, J. Diff. Eqns., 246 (2009), 2055. doi: 10.1016/j.jde.2008.09.002. Google Scholar

[7]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour,, J. Anal. Math., 58 (1992), 9. doi: 10.1007/BF02790355. Google Scholar

[8]

F. Charro, E. Colorado and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side,, J. Diff. Eqns., 246 (2009), 4221. doi: 10.1016/j.jde.2009.01.013. Google Scholar

[9]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions,, J. Funct. Anal., 199 (2003), 468. doi: 10.1016/S0022-1236(02)00101-5. Google Scholar

[10]

M. Del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains,, Comm. Partial Differential Equations, 26 (2001), 2189. Google Scholar

[11]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877. doi: 10.2307/2001562. Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Some results about existence of a second positive solution in a quasilinear critical problem,, Indiana Univ. Math. J., 43 (1994), 941. doi: 10.1512/iumj.1994.43.43041. Google Scholar

[13]

J. García Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition,, J. Diff. Eqns., 198 (2004), 91. Google Scholar

[14]

J. García-Melián, Uniqueness of positive solutions for a boundary blow-up problem,, J. Math. Anal. Appl., 360 (2009), 530. doi: 10.1016/j.jmaa.2009.06.077. Google Scholar

[15]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. I,, NoDEA Nonlinear Differential Equations and Applications, 14 (2007), 499. Google Scholar

[16]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. II,, Proc. London Math. Soc. (3), 94 (2007), 1. Google Scholar

[17]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Contemp. Math., 11 (2009), 585. doi: 10.1142/S0219199709003508. Google Scholar

[18]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, An elliptic system with bifurcation parameters on the boundary condition,, J. Diff. Eqns., 247 (2009), 779. Google Scholar

[19]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions,, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29 (2010), 451. Google Scholar

[20]

J. García-Melián and J. Sabina de Lis, Uniqueness to quasilinear problems for the p-Laplacian in radially symmetric domains,, Nonlinear Anal. Ser. A: Theory Methods, 43 (2001), 803. Google Scholar

[21]

J. García-Melián and J. Sabina de Lis, Remarks on large solutions,, in, (2005), 31. Google Scholar

[22]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321. Google Scholar

[23]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964). Google Scholar

[24]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., 65 (1986). Google Scholar

[26]

W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian,, J. Inequal. Appl., 1 (1997), 47. doi: 10.1155/S1025583497000040. Google Scholar

[27]

J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem,, in, (2005), 311. Google Scholar

[1]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[2]

Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008

[3]

Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815

[4]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

[5]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[6]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[7]

V. V. Motreanu. Multiplicity of solutions for variable exponent Dirichlet problem with concave term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 845-855. doi: 10.3934/dcdss.2012.5.845

[8]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[9]

Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125

[10]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[11]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[12]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[13]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[14]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[15]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[16]

Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112

[17]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[18]

Alfonso Castro, Rosa Pardo. Branches of positive solutions of subcritical elliptic equations in convex domains. Conference Publications, 2015, 2015 (special) : 230-238. doi: 10.3934/proc.2015.0230

[19]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[20]

Claudianor O. Alves, J. V. Gonçalves, Olimpio Hiroshi Miyagaki. Remarks on multiplicity of positive solutions of nonlinear elliptic equations in $IR^N$ with critical growth. Conference Publications, 1998, 1998 (Special) : 51-57. doi: 10.3934/proc.1998.1998.51

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]