# American Institute of Mathematical Sciences

January  2012, 32(1): 101-124. doi: 10.3934/dcds.2012.32.101

## Traveling wave solution for a lattice dynamical system with convolution type nonlinearity

 1 Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137 2 Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677, Taiwan

Received  August 2010 Revised  December 2010 Published  September 2011

We study traveling wave solutions for a lattice dynamical system with convolution type nonlinearity. We consider the monostable case and discuss the asymptotic behaviors, monotonicity and uniqueness of traveling wave. First, we characterize the asymptotic behavior of wave profile at both wave tails. Next, we prove that any wave profile is strictly decreasing. Finally, we prove the uniqueness (up to translation) of wave profile for each given admissible wave speed.
Citation: Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101
##### References:
 [1] P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105. doi: 10.1007/s002050050037. Google Scholar [2] P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520. doi: 10.1137/S0036141000374002. Google Scholar [3] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433. doi: 10.1090/S0002-9939-04-07432-5. Google Scholar [4] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advances in Differential Equations, 2 (1997), 125. Google Scholar [5] X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233. doi: 10.1137/050627824. Google Scholar [6] X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549. Google Scholar [7] X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123. doi: 10.1007/s00208-003-0414-0. Google Scholar [8] J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations,, C. R. Math. Acad. Sci. Paris, 337 (2003), 25. Google Scholar [9] J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar [10] J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727. doi: 10.1017/S0308210504000721. Google Scholar [11] S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations,, Nonlinear Analysis Series A, 48 (2002), 1137. doi: 10.1016/S0362-546X(00)00242-X. Google Scholar [12] W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, World Sci. Publ., 1 (1995), 187. Google Scholar [13] G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation,, Nonlinear Analysis, 72 (2010), 3659. doi: 10.1016/j.na.2009.12.047. Google Scholar [14] S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54. Google Scholar [15] S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129. Google Scholar [16] S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858. doi: 10.1016/j.na.2005.10.042. Google Scholar [17] K. Schumacher, Travelling-front solutions for integro-differential equations,, J. Reine Angew. Math., 316 (1980), 54. doi: 10.1515/crll.1980.316.54. Google Scholar [18] P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409. doi: 10.1093/imamat/68.4.409. Google Scholar [19] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, SIAM J. Math. Anal., 22 (1991), 1016. doi: 10.1137/0522066. Google Scholar [20] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1. Google Scholar [21] B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46. Google Scholar

show all references

##### References:
 [1] P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105. doi: 10.1007/s002050050037. Google Scholar [2] P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520. doi: 10.1137/S0036141000374002. Google Scholar [3] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433. doi: 10.1090/S0002-9939-04-07432-5. Google Scholar [4] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advances in Differential Equations, 2 (1997), 125. Google Scholar [5] X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233. doi: 10.1137/050627824. Google Scholar [6] X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549. Google Scholar [7] X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123. doi: 10.1007/s00208-003-0414-0. Google Scholar [8] J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations,, C. R. Math. Acad. Sci. Paris, 337 (2003), 25. Google Scholar [9] J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797. doi: 10.1016/j.na.2003.10.030. Google Scholar [10] J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727. doi: 10.1017/S0308210504000721. Google Scholar [11] S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations,, Nonlinear Analysis Series A, 48 (2002), 1137. doi: 10.1016/S0362-546X(00)00242-X. Google Scholar [12] W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, World Sci. Publ., 1 (1995), 187. Google Scholar [13] G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation,, Nonlinear Analysis, 72 (2010), 3659. doi: 10.1016/j.na.2009.12.047. Google Scholar [14] S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54. Google Scholar [15] S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129. Google Scholar [16] S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858. doi: 10.1016/j.na.2005.10.042. Google Scholar [17] K. Schumacher, Travelling-front solutions for integro-differential equations,, J. Reine Angew. Math., 316 (1980), 54. doi: 10.1515/crll.1980.316.54. Google Scholar [18] P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409. doi: 10.1093/imamat/68.4.409. Google Scholar [19] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, SIAM J. Math. Anal., 22 (1991), 1016. doi: 10.1137/0522066. Google Scholar [20] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1. Google Scholar [21] B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46. Google Scholar
 [1] Chin-Chin Wu. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2813-2827. doi: 10.3934/dcds.2017121 [2] Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107 [3] Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006 [4] Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137 [5] Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119 [6] E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457 [7] Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071 [8] Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 [9] Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120 [10] Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329 [11] Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 [12] Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197 [13] Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038 [14] Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111 [15] Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659 [16] Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 [17] Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 [18] Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171 [19] Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227 [20] Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213

2018 Impact Factor: 1.143

## Metrics

• PDF downloads (10)
• HTML views (0)
• Cited by (5)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]