September  2011, 31(3): 941-973. doi: 10.3934/dcds.2011.31.941

Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern

1. 

Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, D-85758 Garching

Received  May 2010 Revised  June 2011 Published  August 2011

This paper continues our work on local bifurcations for nonautonomous difference and ordinary differential equations. Here, it is our premise that constant or periodic solutions are replaced by bounded entire solutions as bifurcating objects in order to encounter right-hand sides with an arbitrary time dependence.
    We introduce a bifurcation pattern caused by a dominant spectral interval (of the dichotomy spectrum) crossing the stability boundary. As a result, differing from the classical autonomous (or periodic) situation, the change of stability appears in two steps from uniformly asymptotically stable to asymptotically stable and finally to unstable. During the asymptotically stable regime, a whole family of bounded entire solutions occurs (a so-called "shovel"). Our basic tools are exponential trichotomies and a quantitative version of the surjective implicit function theorem yielding the existence of strongly center manifolds.
Citation: Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941
References:
[1]

R. P. Agarwal, "Difference Equations and Inequalities,", 2nd edition, 228 (2000). Google Scholar

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[3]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998). Google Scholar

[4]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, J. Difference Equ. Appl., 7 (2001), 895. Google Scholar

[5]

_____, A spectral theory for nonautonomous difference equations,, New Trends in Difference Equations (Temuco, (2002), 45. Google Scholar

[6]

B. Aulbach, A reduction principle for nonautonomous differential equations,, Archiv der Mathematik, 39 (1982), 217. doi: 10.1007/BF01899528. Google Scholar

[7]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II,, J. Difference Equ. Appl., 2 (1996), 251. Google Scholar

[8]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations Oper. Theory, 14 (1991), 613. doi: 10.1007/BF01200554. Google Scholar

[9]

_____, Dichotomies of perturbed time varying systems and the power method,, Indiana Univ. Math. J., 42 (1993), 699. doi: 10.1512/iumj.1993.42.42031. Google Scholar

[10]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690. Google Scholar

[11]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,", D. C. Heath and Co., (1965). Google Scholar

[12]

_____, "Dichotomies in Stability Theory,", Lect. Notes Math., 629 (1978). Google Scholar

[13]

J. L. Dalec'kiĭ and M. G. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974). Google Scholar

[14]

L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals,, J. Dyn. Differ. Equations, 19 (2007), 265. Google Scholar

[15]

S. Elaydi and O. Hajek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7. Google Scholar

[16]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417. Google Scholar

[17]

D. Henry, Geometric theory of semilinear parabolic equations,, Lect. Notes Math., 840 (1981). Google Scholar

[18]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284. doi: 10.1137/1012051. Google Scholar

[19]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509. Google Scholar

[20]

R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifurcations: An explanation,, Stoch. Dyn., 2 (2002), 67. doi: 10.1142/S0219493702000297. Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,", reprint of the 1980 edition, (1980). Google Scholar

[22]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differ. Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[23]

_____, Exponential dichotomies for almost periodic equations,, Proc. Am. Math. Soc., 101 (1987), 293. doi: 10.1090/S0002-9939-1987-0902544-6. Google Scholar

[24]

_____, Exponential dichotomies and Fredholm operators,, Proc. Am. Math. Soc., 104 (1988), 149. doi: 10.1090/S0002-9939-1988-0958058-1. Google Scholar

[25]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles, 102 (1988), 19. Google Scholar

[26]

_____, On exponential trichotomy of linear difference equations,, Appl. Anal., 40 (1991), 89. doi: 10.1080/00036819108839996. Google Scholar

[27]

C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations,, in, 42 (2004), 295. Google Scholar

[28]

_____, A note on the dichotomy spectrum,, J. Difference Equ. Appl., 15 (2009), 1021. Google Scholar

[29]

_____, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739. doi: 10.3934/dcdsb.2010.14.739. Google Scholar

[30]

_____, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937. Google Scholar

[31]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: An algorithmic approach,, in, (2005), 155. Google Scholar

[32]

_____, Taylor approximation of invariant fiber bundles for nonautonomous difference equations,, Nonlin. Analysis, 60 (2005), 1303. doi: 10.1016/j.na.2004.10.019. Google Scholar

[33]

_____, Taylor approximation of integral manifolds,, J. Dyn. Differ. Equations, 18 (2006), 427. Google Scholar

[34]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations,, J. Dyn. Differ. Equations, 14 (2002), 243. Google Scholar

[35]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[36]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002). Google Scholar

[37]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. (Fixed-Point Theorems),", Springer-Verlag, (1986). Google Scholar

show all references

References:
[1]

R. P. Agarwal, "Difference Equations and Inequalities,", 2nd edition, 228 (2000). Google Scholar

[2]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41. doi: 10.1016/S0898-1221(99)00167-4. Google Scholar

[3]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998). Google Scholar

[4]

B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations,, J. Difference Equ. Appl., 7 (2001), 895. Google Scholar

[5]

_____, A spectral theory for nonautonomous difference equations,, New Trends in Difference Equations (Temuco, (2002), 45. Google Scholar

[6]

B. Aulbach, A reduction principle for nonautonomous differential equations,, Archiv der Mathematik, 39 (1982), 217. doi: 10.1007/BF01899528. Google Scholar

[7]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II,, J. Difference Equ. Appl., 2 (1996), 251. Google Scholar

[8]

A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts,, Integral Equations Oper. Theory, 14 (1991), 613. doi: 10.1007/BF01200554. Google Scholar

[9]

_____, Dichotomies of perturbed time varying systems and the power method,, Indiana Univ. Math. J., 42 (1993), 699. doi: 10.1512/iumj.1993.42.42031. Google Scholar

[10]

A. G. Baskakov, Invertibility and the Fredholm property of difference operators,, Mathematical Notes, 67 (2000), 690. Google Scholar

[11]

W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations,", D. C. Heath and Co., (1965). Google Scholar

[12]

_____, "Dichotomies in Stability Theory,", Lect. Notes Math., 629 (1978). Google Scholar

[13]

J. L. Dalec'kiĭ and M. G. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space,", Translations of Mathematical Monographs, 43 (1974). Google Scholar

[14]

L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals,, J. Dyn. Differ. Equations, 19 (2007), 265. Google Scholar

[15]

S. Elaydi and O. Hajek, Exponential trichotomy of differential systems,, J. Math. Anal. Appl., 129 (1988), 362. doi: 10.1016/0022-247X(88)90255-7. Google Scholar

[16]

S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations,, J. Difference Equ. Appl., 3 (1998), 417. Google Scholar

[17]

D. Henry, Geometric theory of semilinear parabolic equations,, Lect. Notes Math., 840 (1981). Google Scholar

[18]

J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem,, SIAM Review, 12 (1970), 284. doi: 10.1137/1012051. Google Scholar

[19]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043. doi: 10.1137/090754509. Google Scholar

[20]

R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifurcations: An explanation,, Stoch. Dyn., 2 (2002), 67. doi: 10.1142/S0219493702000297. Google Scholar

[21]

T. Kato, "Perturbation Theory for Linear Operators,", reprint of the 1980 edition, (1980). Google Scholar

[22]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differ. Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[23]

_____, Exponential dichotomies for almost periodic equations,, Proc. Am. Math. Soc., 101 (1987), 293. doi: 10.1090/S0002-9939-1987-0902544-6. Google Scholar

[24]

_____, Exponential dichotomies and Fredholm operators,, Proc. Am. Math. Soc., 104 (1988), 149. doi: 10.1090/S0002-9939-1988-0958058-1. Google Scholar

[25]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles, 102 (1988), 19. Google Scholar

[26]

_____, On exponential trichotomy of linear difference equations,, Appl. Anal., 40 (1991), 89. doi: 10.1080/00036819108839996. Google Scholar

[27]

C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations,, in, 42 (2004), 295. Google Scholar

[28]

_____, A note on the dichotomy spectrum,, J. Difference Equ. Appl., 15 (2009), 1021. Google Scholar

[29]

_____, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739. doi: 10.3934/dcdsb.2010.14.739. Google Scholar

[30]

_____, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937. Google Scholar

[31]

C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: An algorithmic approach,, in, (2005), 155. Google Scholar

[32]

_____, Taylor approximation of invariant fiber bundles for nonautonomous difference equations,, Nonlin. Analysis, 60 (2005), 1303. doi: 10.1016/j.na.2004.10.019. Google Scholar

[33]

_____, Taylor approximation of integral manifolds,, J. Dyn. Differ. Equations, 18 (2006), 427. Google Scholar

[34]

S. Siegmund, Dichotomy spectrum for nonautonomous differential equations,, J. Dyn. Differ. Equations, 14 (2002), 243. Google Scholar

[35]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320. doi: 10.1016/0022-0396(78)90057-8. Google Scholar

[36]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002). Google Scholar

[37]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. (Fixed-Point Theorems),", Springer-Verlag, (1986). Google Scholar

[1]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[2]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[3]

Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677

[4]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[5]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739

[6]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[7]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[8]

Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094

[9]

Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15

[10]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

[11]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[12]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[13]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[14]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[15]

A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003

[16]

Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225

[17]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[18]

Simon Brendle, Rainer Nagel. PFDE with nonautonomous past. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 953-966. doi: 10.3934/dcds.2002.8.953

[19]

Christian Pötzsche. Nonautonomous continuation of bounded solutions. Communications on Pure & Applied Analysis, 2011, 10 (3) : 937-961. doi: 10.3934/cpaa.2011.10.937

[20]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]