March  2011, 31(1): 35-64. doi: 10.3934/dcds.2011.31.35

Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms

1. 

Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Ingegneria dell' Informazione, Università di Siena, Via Roma 56, 53100, Siena

3. 

Dipartimento di Ingegneria dell’Informazione, Università di Siena, Via Roma 56, 53100 Siena, Italy

Received  February 2010 Revised  September 2010 Published  June 2011

The aim of the paper is to provide conditions ensuring the existence of non-trivial non-negative periodic solutions to a system of doubly degenerate parabolic equations containing delayed nonlocal terms and satisfying Dirichlet boundary conditions. The employed approach is based on the theory of the Leray-Schauder topological degree theory, thus a crucial purpose of the paper is to obtain a priori bounds in a convenient functional space, here $L^2(Q_T)$, on the solutions of certain homotopies. This is achieved under different assumptions on the sign of the kernels of the nonlocal terms. The considered system is a possible model of the interactions between two biological species sharing the same territory where such interactions are modeled by the kernels of the nonlocal terms. To this regard the obtained results can be viewed as coexistence results of the two biological populations under different intra and inter specific interferences on their natural growth rates.
Citation: Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35
References:
[1]

G. A. Afrouzi and S. H. Rasouli, Population models involving the $p$-Laplacian with indefinite weight and constant yield harvesting,, Chaos Solitons Fractals, 31 (2007), 404. doi: 10.1016/j.chaos.2005.09.067.

[2]

W. Allegretto and P. Nistri, Existence and optimal control for periodic parabolic equations with nonlocal terms,, IMA J. Math. Control Inform., 16 (1999), 43. doi: 10.1093/imamci/16.1.43.

[3]

P. Benilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems,, Adv. Differential Equations, 1 (1996), 1053.

[4]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Universitext, (1993).

[5]

G. Fragnelli, P. Nistri and D. Papini, Positive periodic solutions and optimal control for a distributed biological model of two interacting species,, Nonlinear Anal. Real World Appl., 12 (2011), 1410. doi: 10.1016/j.nonrwa.2010.10.002.

[6]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations,, J. Math. Anal. Appl., 367 (2010), 204. doi: 10.1016/j.jmaa.2009.12.039.

[7]

E. Gurtin and R. C. MacCamy, On the diffusion of biological populations,, Math. Biosci., 33 (1977), 35. doi: 10.1016/0025-5564(77)90062-1.

[8]

E. Gurtin and R. C. MacCamy, Diffusion models for age-structured populations,, Math. Biosci., 54 (1981), 49. doi: 10.1016/0025-5564(81)90075-4.

[9]

R. Huang, Y. Wang and Y. Ke, Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1005. doi: 10.3934/dcdsb.2005.5.1005.

[10]

A. V. Ivanov, Hölder estimates for equations of fast diffusion type,, St. Petersburg Math. J., 6 (1995), 791.

[11]

A. V. Ivanov, Hölder estimates for equations of slow and normal diffusion type,, J. Math. Sci. (New York), 85 (1997), 1640. doi: 10.1007/BF02355324.

[12]

B. Kawohl and P. Lindqvist, Positive eigenfunctions for the $p$-Laplace operator revisited,, Analysis (Munich), 26 (2006), 545.

[13]

O. Ladyženskaja, V. Solonnikov and N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs, 23 (1967).

[14]

D. Li and X. Zhang, On a nonlocal aggregation model with nonlinear diffusion,, Discrete Contin. Dyn. Syst., 27 (2010), 301. doi: 10.3934/dcds.2010.27.301.

[15]

N. Mizoguchi, Periodic solutions for degenerate diffusion equations,, Indiana Univ. Math. J., 44 (1995), 413. doi: 10.1512/iumj.1995.44.1994.

[16]

M. Nakao, Periodic solutions of some nonlinear degenerate parabolic equations,, J. Math. Anal. Appl., 104 (1984), 554. doi: 10.1016/0022-247X(84)90020-9.

[17]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,'', Ecology and Diffusion, 10 (1980).

[18]

S. Oruganti, J. Shi and R. Shivaji, Logistic equation with the $p$-Laplacian and constant yield harvesting,, Abstr. Appl. Anal., 2004 (): 723. doi: 10.1155/S1085337504311097.

[19]

M. M. Porzio and V. Vespri, Hölder estimates for local solution of some doubly nonlinear degenerate parabolic equation,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[20]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,'', Mathematical Surveys and Monographs, 49 (1997).

[21]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).

[22]

C. Wang, J. Yin and M. Wen, Periodic optimal control for a degenerate nonlinear diffusion equation,, Applied Mathematics and Information Science, 17 (2006), 364. doi: 10.1007/s10598-006-0030-4.

[23]

J. Wang and W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms,, J. Math. Anal. Appl., 331 (2007), 481. doi: 10.1016/j.jmaa.2006.08.059.

[24]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of porous medium equations with weakly nonlinear sources,, Northeast. Math. J., 16 (2000), 475.

[25]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of evolution $p$-Laplacian equations with nonlinear sources,, J. Math. Anal. Appl., 219 (1998), 76. doi: 10.1006/jmaa.1997.5783.

[26]

Q. Zhou, Y. Ke, Y. Wang and J. Yin, Periodic $p$-Laplacian with nonlocal terms,, Nonlinear Anal., 66 (2007), 442. doi: 10.1016/j.na.2005.11.038.

show all references

References:
[1]

G. A. Afrouzi and S. H. Rasouli, Population models involving the $p$-Laplacian with indefinite weight and constant yield harvesting,, Chaos Solitons Fractals, 31 (2007), 404. doi: 10.1016/j.chaos.2005.09.067.

[2]

W. Allegretto and P. Nistri, Existence and optimal control for periodic parabolic equations with nonlocal terms,, IMA J. Math. Control Inform., 16 (1999), 43. doi: 10.1093/imamci/16.1.43.

[3]

P. Benilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems,, Adv. Differential Equations, 1 (1996), 1053.

[4]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Universitext, (1993).

[5]

G. Fragnelli, P. Nistri and D. Papini, Positive periodic solutions and optimal control for a distributed biological model of two interacting species,, Nonlinear Anal. Real World Appl., 12 (2011), 1410. doi: 10.1016/j.nonrwa.2010.10.002.

[6]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations,, J. Math. Anal. Appl., 367 (2010), 204. doi: 10.1016/j.jmaa.2009.12.039.

[7]

E. Gurtin and R. C. MacCamy, On the diffusion of biological populations,, Math. Biosci., 33 (1977), 35. doi: 10.1016/0025-5564(77)90062-1.

[8]

E. Gurtin and R. C. MacCamy, Diffusion models for age-structured populations,, Math. Biosci., 54 (1981), 49. doi: 10.1016/0025-5564(81)90075-4.

[9]

R. Huang, Y. Wang and Y. Ke, Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1005. doi: 10.3934/dcdsb.2005.5.1005.

[10]

A. V. Ivanov, Hölder estimates for equations of fast diffusion type,, St. Petersburg Math. J., 6 (1995), 791.

[11]

A. V. Ivanov, Hölder estimates for equations of slow and normal diffusion type,, J. Math. Sci. (New York), 85 (1997), 1640. doi: 10.1007/BF02355324.

[12]

B. Kawohl and P. Lindqvist, Positive eigenfunctions for the $p$-Laplace operator revisited,, Analysis (Munich), 26 (2006), 545.

[13]

O. Ladyženskaja, V. Solonnikov and N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs, 23 (1967).

[14]

D. Li and X. Zhang, On a nonlocal aggregation model with nonlinear diffusion,, Discrete Contin. Dyn. Syst., 27 (2010), 301. doi: 10.3934/dcds.2010.27.301.

[15]

N. Mizoguchi, Periodic solutions for degenerate diffusion equations,, Indiana Univ. Math. J., 44 (1995), 413. doi: 10.1512/iumj.1995.44.1994.

[16]

M. Nakao, Periodic solutions of some nonlinear degenerate parabolic equations,, J. Math. Anal. Appl., 104 (1984), 554. doi: 10.1016/0022-247X(84)90020-9.

[17]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,'', Ecology and Diffusion, 10 (1980).

[18]

S. Oruganti, J. Shi and R. Shivaji, Logistic equation with the $p$-Laplacian and constant yield harvesting,, Abstr. Appl. Anal., 2004 (): 723. doi: 10.1155/S1085337504311097.

[19]

M. M. Porzio and V. Vespri, Hölder estimates for local solution of some doubly nonlinear degenerate parabolic equation,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[20]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,'', Mathematical Surveys and Monographs, 49 (1997).

[21]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007).

[22]

C. Wang, J. Yin and M. Wen, Periodic optimal control for a degenerate nonlinear diffusion equation,, Applied Mathematics and Information Science, 17 (2006), 364. doi: 10.1007/s10598-006-0030-4.

[23]

J. Wang and W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms,, J. Math. Anal. Appl., 331 (2007), 481. doi: 10.1016/j.jmaa.2006.08.059.

[24]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of porous medium equations with weakly nonlinear sources,, Northeast. Math. J., 16 (2000), 475.

[25]

Y. Wang, J. Yin and Z. Wu, Periodic solutions of evolution $p$-Laplacian equations with nonlinear sources,, J. Math. Anal. Appl., 219 (1998), 76. doi: 10.1006/jmaa.1997.5783.

[26]

Q. Zhou, Y. Ke, Y. Wang and J. Yin, Periodic $p$-Laplacian with nonlocal terms,, Nonlinear Anal., 66 (2007), 442. doi: 10.1016/j.na.2005.11.038.

[1]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[2]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[3]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[4]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[5]

Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

[6]

Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005

[7]

Humberto Ramos Quoirin, Kenichiro Umezu. A loop type component in the non-negative solutions set of an indefinite elliptic problem. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1255-1269. doi: 10.3934/cpaa.2018060

[8]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[9]

Kewei Zhang. On non-negative quasiconvex functions with quasimonotone gradients and prescribed zero sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 353-366. doi: 10.3934/dcds.2008.21.353

[10]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[11]

Mitsuharu Ôtani, Yoshie Sugiyama. Lipschitz continuous solutions of some doubly nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 647-670. doi: 10.3934/dcds.2002.8.647

[12]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

[13]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[14]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[15]

Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203

[16]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[17]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[18]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[19]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[20]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]