December  2011, 31(4): 1233-1248. doi: 10.3934/dcds.2011.31.1233

A variational approach to semilinear elliptic equations with measure data

1. 

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41 - 25121 Brescia, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Cozzi 53 - 20125 Milano, Italy

Received  October 2010 Revised  December 2010 Published  September 2011

We describe a direct variational approach to a class of semilinear elliptic equations with measure data. Using a typical variational argument, we show the existence of multiple solutions.
Citation: Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233
References:
[1]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185. doi: 10.5802/aif.956. Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar

[3]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673. Google Scholar

[4]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641. Google Scholar

[5]

L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539. Google Scholar

[6]

H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077. Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55. Google Scholar

[8]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[9]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147. Google Scholar

[10]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993). Google Scholar

[11]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741. Google Scholar

[12]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25. Google Scholar

[13]

M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857. doi: 10.1137/090747968. Google Scholar

[14]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285. Google Scholar

[15]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37. Google Scholar

[16]

A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433. Google Scholar

[17]

T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275. Google Scholar

[18]

T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985). Google Scholar

[19]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457. doi: 10.1002/cpa.3160130308. Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577. doi: 10.1002/cpa.3160140329. Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931. doi: 10.2307/2372841. Google Scholar

[22]

L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207. Google Scholar

[23]

L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781. doi: 10.1007/s00028-008-0446-32. Google Scholar

[24]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. doi: 10.5802/aif.204. Google Scholar

[25]

G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966). Google Scholar

[26]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77. Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477. doi: 10.3934/dcds.2009.23.477. Google Scholar

show all references

References:
[1]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier (Grenoble), 34 (1984), 185. doi: 10.5802/aif.956. Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241. Google Scholar

[3]

P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation,, Dedicated to Philippe Bénilan, 3 (2003), 673. Google Scholar

[4]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. Partial Differential Equations, 17 (1992), 641. Google Scholar

[5]

L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539. Google Scholar

[6]

H. Brezis and F. Browder, A property of Sobolev spaces,, Comm. Partial Differential Equations, 4 (1979), 1077. Google Scholar

[7]

H. Brezis, M. Marcus and A. C. Ponce, Nonlinear elliptic equations with measures revisited,, in, 163 (2007), 55. Google Scholar

[8]

H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565. doi: 10.2969/jmsj/02540565. Google Scholar

[9]

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations,, J. Convex Anal., 11 (2004), 147. Google Scholar

[10]

K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems,", Progress in Nonlinear Differential Equations and their Applications, 6 (1993). Google Scholar

[11]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 741. Google Scholar

[12]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari,, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25. Google Scholar

[13]

M. Degiovanni and M. Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions,, SIAM J. Control Optim., 48 (2009), 2857. doi: 10.1137/090747968. Google Scholar

[14]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data,, Topol. Methods Nonlinear Anal., 28 (2006), 285. Google Scholar

[15]

A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities,, Topol. Methods Nonlinear Anal., 30 (2007), 37. Google Scholar

[16]

A. Ferrero and C. Saccon, Multiplicity results for a class of asymptotically linear elliptic problems with resonance and applications to problems with measure data,, Adv. Nonlinear Stud., 10 (2010), 433. Google Scholar

[17]

T. Gallouët and J.-M. Morel, Resolution of a semilinear equation in $L^1$,, Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984), 275. Google Scholar

[18]

T. Gallouët and J.-M. Morel, Corrigenda: "Resolution of a semilinear equation in $L^1$,", Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985). Google Scholar

[19]

J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations,, Comm. Pure Appl. Math., 13 (1960), 457. doi: 10.1002/cpa.3160130308. Google Scholar

[20]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577. doi: 10.1002/cpa.3160140329. Google Scholar

[21]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931. doi: 10.2307/2372841. Google Scholar

[22]

L. Orsina, Solvability of linear and semilinear eigenvalue problems with $L\^1$ data,, Rend. Sem. Mat. Univ. Padova, 90 (1993), 207. Google Scholar

[23]

L. Orsina and A. Ponce, Semilinear elliptic equations and systems with diffuse measures,, J. Evol. Equ., 8 (2008), 781. doi: 10.1007/s00028-008-0446-32. Google Scholar

[24]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. doi: 10.5802/aif.204. Google Scholar

[25]

G. Stampacchia, "Équations Elliptiques du Second Ordre à Coefficients Discontinus,", Séminaire de Mathématiques Supérieures, 16 (1966). Google Scholar

[26]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77. Google Scholar

[27]

N. S. Trudinger and X.-J. Wang, Quasilinear elliptic equations with signed measure data,, Discrete Contin. Dyn. Syst., 23 (2009), 477. doi: 10.3934/dcds.2009.23.477. Google Scholar

[1]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[2]

G. R. Cirmi, S. Leonardi. Higher differentiability for solutions of linear elliptic systems with measure data. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 89-104. doi: 10.3934/dcds.2010.26.89

[3]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

[4]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[5]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[6]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[7]

Francis Ribaud. Semilinear parabolic equations with distributions as initial data. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 305-316. doi: 10.3934/dcds.1997.3.305

[8]

Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991

[9]

Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507

[10]

Verena Bögelein, Frank Duzaar, Ugo Gianazza. Very weak solutions of singular porous medium equations with measure data. Communications on Pure & Applied Analysis, 2015, 14 (1) : 23-49. doi: 10.3934/cpaa.2015.14.23

[11]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[12]

Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798

[13]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[14]

Hwai-Chiuan Wang. On domains and their indexes with applications to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 447-467. doi: 10.3934/dcds.2007.19.447

[15]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[16]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[17]

Antonio Greco, Marcello Lucia. Gamma-star-shapedness for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 93-99. doi: 10.3934/cpaa.2005.4.93

[18]

Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431

[19]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[20]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]