December  2011, 31(4): 1069-1096. doi: 10.3934/dcds.2011.31.1069

Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling

1. 

Department of Mathematics & Computer Science, Northern Michigan University, Marquette, MI 49855, United States

2. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received  November 2009 Revised  June 2010 Published  September 2011

This paper concerns new developments on first-order necessary conditions in set-valued optimization with applications of the results obtained to deriving refined versions of the so-called second fundamental theorem of welfare economics. It is shown that equilibrium marginal prices at local Pareto-type optimal allocations of nonconvex economies are in fact adjoint elements/ multipliers in necessary conditions for fully localized minimizers of appropriate constrained set-valued optimization problems. The latter notions are new in multiobjective optimization and reduce to conventional notions of minima for scalar problems. Our approach is based on advanced tools of variational analysis and generalized differentiation.
Citation: Truong Q. Bao, Boris S. Mordukhovich. Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1069-1096. doi: 10.3934/dcds.2011.31.1069
References:
[1]

T. Q. Bao and B. S. Mordukhovich, Necessary conditions for super minimizers in constrained multiobjective optimization,, J. Global Optim., 43 (2009), 533. doi: 10.1007/s10898-008-9336-4. Google Scholar

[2]

T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers in multiobjective optimization: Existence and optimality conditions,, Math. Program., 122 (2010), 301. doi: 10.1007/s10107-008-0249-2. Google Scholar

[3]

S. Bellaassali and A. Jourani, Lagrange multipliers for multiobjective programs with a general preference,, Set-Valued Anal., 16 (2008), 229. doi: 10.1007/s11228-008-0078-8. Google Scholar

[4]

J.-M. Bonnisseau and B. Cornet, Valuation equilibrium and Pareto optimum in nonconvex economies. General equilibrium theory and increasing returns,, J. Math. Econ., 17 (1988), 293. Google Scholar

[5]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 20 (2005). Google Scholar

[6]

B. Cornet, The second welfare theorem in nonconvex economies,, CORE discussion paper # 8630, (8630). Google Scholar

[7]

S. Dempe and V. Kalashnikov, eds., "Optimization with Multivalued Mappings: Theory, Applications and Algorithms,", Springer Optim. Appl., 2 (2006). Google Scholar

[8]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?,, Math. Program., (). doi: 10.1007/s10107-010-0342-1. Google Scholar

[9]

M. Florenzano, P. Gourdel and A. Jofré, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies,, J. Economic Theory, 29 (2006), 549. doi: 10.1007/s00199-005-0033-y. Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003). Google Scholar

[11]

A. D. Ioffe, Variational analysis and mathematical economics, I: Subdifferential calculus and the second theorem of welfare economics,, Adv. Math. Econ., 12 (2009), 71. doi: 10.1007/978-4-431-92935-2_3. Google Scholar

[12]

J. Jahn, "Vector Optimization. Theory, Applications and Extensions,", Series in Operations Research and Decision Theory, (2004). Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies,, in, 27 (1999). Google Scholar

[14]

A. Jofré and J. R. Cayupi, A nonconvex separation property and some applications,, Math. Program., 108 (2006), 37. doi: 10.1007/s10107-006-0703-y. Google Scholar

[15]

M. A. Khan, Ioffe's normal cone and the foundation of welfare economics: The infinite-dimensional theory,, J. Math. Anal. Appl., 161 (1991), 284. doi: 10.1016/0022-247X(91)90376-B. Google Scholar

[16]

M. A. Khan, The Mordukhovich normal cone and the foundations of welfare economics,, J. Public Economic Theory, 1 (1999), 309. doi: 10.1111/1097-3923.00014. Google Scholar

[17]

D. T. L/duc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989). Google Scholar

[18]

A. Mas-Colell, "The Theory of General Economic Equilibrium. A Differentiable Approach,", Econometric Society Monographs, 9 (1989). Google Scholar

[19]

B. S. Mordukhovich, An abstract extremal principle with applications to welfare economics,, J. Math. Anal. Appl., 251 (2000), 187. doi: 10.1006/jmaa.2000.7041. Google Scholar

[20]

B. S. Mordukhovich, Nonlinear prices in nonconvex economics with classical Pareto and strong Pareto allocations,, Positivity, 9 (2005), 541. doi: 10.1007/s11117-004-8076-z. Google Scholar

[21]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006). Google Scholar

[22]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, II: Applications,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331 (2006). Google Scholar

[23]

B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu, An extended extremal principle with applications to multiobjective optimization,, SIAM J. Optim., 14 (2003), 359. doi: 10.1137/S1052623402414701. Google Scholar

[24]

J. Quirk and R. Saposnik, "Introduction to General Equilibrium Theory and Welfare Economics,", Economics Handbook Series, (1968). Google Scholar

[25]

R. T. Rockafellar, Directional Lipschitzian functions and subdifferential calculus,, Proc. London Math. Soc. (3), 39 (1979), 331. doi: 10.1112/plms/s3-39.2.331. Google Scholar

[26]

P. A. Samuelson, "Foundations of Economic Analysis,", Harvard University Press, (1947). Google Scholar

[27]

Q. J. Zhu, Nonconvex separation theorem for multifunctions, subdifferential calculus and applications,, Set-Valued Anal., 12 (2004), 275. doi: 10.1023/B:SVAN.0000023401.51035.28. Google Scholar

show all references

References:
[1]

T. Q. Bao and B. S. Mordukhovich, Necessary conditions for super minimizers in constrained multiobjective optimization,, J. Global Optim., 43 (2009), 533. doi: 10.1007/s10898-008-9336-4. Google Scholar

[2]

T. Q. Bao and B. S. Mordukhovich, Relative Pareto minimizers in multiobjective optimization: Existence and optimality conditions,, Math. Program., 122 (2010), 301. doi: 10.1007/s10107-008-0249-2. Google Scholar

[3]

S. Bellaassali and A. Jourani, Lagrange multipliers for multiobjective programs with a general preference,, Set-Valued Anal., 16 (2008), 229. doi: 10.1007/s11228-008-0078-8. Google Scholar

[4]

J.-M. Bonnisseau and B. Cornet, Valuation equilibrium and Pareto optimum in nonconvex economies. General equilibrium theory and increasing returns,, J. Math. Econ., 17 (1988), 293. Google Scholar

[5]

J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 20 (2005). Google Scholar

[6]

B. Cornet, The second welfare theorem in nonconvex economies,, CORE discussion paper # 8630, (8630). Google Scholar

[7]

S. Dempe and V. Kalashnikov, eds., "Optimization with Multivalued Mappings: Theory, Applications and Algorithms,", Springer Optim. Appl., 2 (2006). Google Scholar

[8]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?,, Math. Program., (). doi: 10.1007/s10107-010-0342-1. Google Scholar

[9]

M. Florenzano, P. Gourdel and A. Jofré, Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies,, J. Economic Theory, 29 (2006), 549. doi: 10.1007/s00199-005-0033-y. Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003). Google Scholar

[11]

A. D. Ioffe, Variational analysis and mathematical economics, I: Subdifferential calculus and the second theorem of welfare economics,, Adv. Math. Econ., 12 (2009), 71. doi: 10.1007/978-4-431-92935-2_3. Google Scholar

[12]

J. Jahn, "Vector Optimization. Theory, Applications and Extensions,", Series in Operations Research and Decision Theory, (2004). Google Scholar

[13]

A. Jofré, A second-welfare theorem in nonconvex economies,, in, 27 (1999). Google Scholar

[14]

A. Jofré and J. R. Cayupi, A nonconvex separation property and some applications,, Math. Program., 108 (2006), 37. doi: 10.1007/s10107-006-0703-y. Google Scholar

[15]

M. A. Khan, Ioffe's normal cone and the foundation of welfare economics: The infinite-dimensional theory,, J. Math. Anal. Appl., 161 (1991), 284. doi: 10.1016/0022-247X(91)90376-B. Google Scholar

[16]

M. A. Khan, The Mordukhovich normal cone and the foundations of welfare economics,, J. Public Economic Theory, 1 (1999), 309. doi: 10.1111/1097-3923.00014. Google Scholar

[17]

D. T. L/duc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989). Google Scholar

[18]

A. Mas-Colell, "The Theory of General Economic Equilibrium. A Differentiable Approach,", Econometric Society Monographs, 9 (1989). Google Scholar

[19]

B. S. Mordukhovich, An abstract extremal principle with applications to welfare economics,, J. Math. Anal. Appl., 251 (2000), 187. doi: 10.1006/jmaa.2000.7041. Google Scholar

[20]

B. S. Mordukhovich, Nonlinear prices in nonconvex economics with classical Pareto and strong Pareto allocations,, Positivity, 9 (2005), 541. doi: 10.1007/s11117-004-8076-z. Google Scholar

[21]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330 (2006). Google Scholar

[22]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, II: Applications,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331 (2006). Google Scholar

[23]

B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu, An extended extremal principle with applications to multiobjective optimization,, SIAM J. Optim., 14 (2003), 359. doi: 10.1137/S1052623402414701. Google Scholar

[24]

J. Quirk and R. Saposnik, "Introduction to General Equilibrium Theory and Welfare Economics,", Economics Handbook Series, (1968). Google Scholar

[25]

R. T. Rockafellar, Directional Lipschitzian functions and subdifferential calculus,, Proc. London Math. Soc. (3), 39 (1979), 331. doi: 10.1112/plms/s3-39.2.331. Google Scholar

[26]

P. A. Samuelson, "Foundations of Economic Analysis,", Harvard University Press, (1947). Google Scholar

[27]

Q. J. Zhu, Nonconvex separation theorem for multifunctions, subdifferential calculus and applications,, Set-Valued Anal., 12 (2004), 275. doi: 10.1023/B:SVAN.0000023401.51035.28. Google Scholar

[1]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[2]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[3]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[4]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[5]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial & Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

[6]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[7]

Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018140

[8]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[9]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[10]

Mohamed Aly Tawhid. Nonsmooth generalized complementarity as unconstrained optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 411-423. doi: 10.3934/jimo.2010.6.411

[11]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[12]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[13]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[14]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[15]

Xian-Jun Long, Nan-Jing Huang, Zhi-Bin Liu. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. Journal of Industrial & Management Optimization, 2008, 4 (2) : 287-298. doi: 10.3934/jimo.2008.4.287

[16]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[17]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[18]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[19]

Majid E. Abbasov. Generalized exhausters: Existence, construction, optimality conditions. Journal of Industrial & Management Optimization, 2015, 11 (1) : 217-230. doi: 10.3934/jimo.2015.11.217

[20]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]