# American Institute of Mathematical Sciences

August  2011, 30(3): 807-834. doi: 10.3934/dcds.2011.30.807

## On the critical nongauge invariant nonlinear Schrödinger equation

 1 Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico, Mexico

Received  January 2010 Revised  January 2011 Published  March 2011

We consider the Cauchy problem for the critical nongauge invariant nonlinear Schrödinger equations

$iu_{t}+\frac{1}{2}$uxx$=i\mu\overline{u}^{\alpha}u^{\beta},\text{ } x\in\mathbf{R},\text{ }t>0,$
$\ \ \ \ \ \ \ \ u(0,x) =u_{0}(x) ,\text{ }x\in\mathbf{R,} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)$

where $\beta>\alpha\geq0,$ $\alpha+\beta\geq2,$ $\mu=-i^{\frac{\omega}{2} }t^{\frac{\theta}{2}-1},$ $\omega=\beta-\alpha-1,$ $\theta=\alpha+\beta-1.$ We prove that there exists a unique solution $u\in\mathbf{C}( [ 0,\infty) ;\mathbf{H}^{1}\cap\mathbf{H}^{0,1})$ of the Cauchy problem (1). Also we find the large time asymptotics of solutions.

Citation: Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807
##### References:
 [1] H. Bateman and A. Erdelyi, "Tables of Integral Transforms,", McGraw-Hill Book Co., (1954). Google Scholar [2] Th. Cazenave, "Semilinear Schrödinger Equations,", Courant Institute of Mathematical Sciences, (2003). Google Scholar [3] N. Hayashi and E. I. Kaikina, Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations,, SUT J. Math., 34 (1998), 111. Google Scholar [4] N. Hayashi and E. I. Kaikina, "Nonlinear Theory of Pseudodifferential Equations on a Half-line,", North-Holland Mathematics Studies, (2004). Google Scholar [5] N. Hayashi and P. I. Naumkin, Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations without a self-conjugate property,, Funkcialaj Ekvacioj, 42 (1999), 311. Google Scholar [6] N. Hayashi and P. I. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equation with cubic nonlinearities,, International Journal of Pure and Applied Mathematics, 3 (2002), 255. Google Scholar [7] N. Hayashi and P. I. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation,, Canadian Journal of Mathematics, 54 (2002), 1065. doi: 10.4153/CJM-2002-039-3. Google Scholar [8] N. Hayashi and P. I. Naumkin, On the asymptotics for cubic nonlinear Schrödinger equations,, Complex Var. Theory Appl., 49 (2004), 339. Google Scholar [9] N. Hayashi and P. I. Naumkin, Nongauge invariant cubic nonlinear Schrödinger equations,, Pac. J. Appl. Math., 1 (2008), 1. Google Scholar [10] N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified Wave Operators for Nonlinear Schrödinger Equations in 1d or 2d,, Electronic Journal of Differential Equations, (2004), 1. Google Scholar [11] N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^{2}(R^n)$spaces for some Schrödinger equations,, Ann. I.H.P. (Phys. Théor.), 48 (1988), 17. Google Scholar [12] N. Hayashi and T. Ozawa, Modified wave operators for the derivative nonlinear Schrödinger equation,, Math. Ann., 298 (1994), 557. doi: 10.1007/BF01459751. Google Scholar [13] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension,, Commun. Math. Phys., 139 (1991), 479. doi: 10.1007/BF02101876. Google Scholar [14] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations,, Commun. Pure Appl. Math., 38 (1985), 685. doi: 10.1002/cpa.3160380516. Google Scholar [15] S. Tonegawa, Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension,, Hokkaido Math. J., 30 (2001), 451. Google Scholar

show all references

##### References:
 [1] H. Bateman and A. Erdelyi, "Tables of Integral Transforms,", McGraw-Hill Book Co., (1954). Google Scholar [2] Th. Cazenave, "Semilinear Schrödinger Equations,", Courant Institute of Mathematical Sciences, (2003). Google Scholar [3] N. Hayashi and E. I. Kaikina, Local existence of solutions to the Cauchy problem for nonlinear Schrödinger equations,, SUT J. Math., 34 (1998), 111. Google Scholar [4] N. Hayashi and E. I. Kaikina, "Nonlinear Theory of Pseudodifferential Equations on a Half-line,", North-Holland Mathematics Studies, (2004). Google Scholar [5] N. Hayashi and P. I. Naumkin, Large time behavior of solutions for derivative cubic nonlinear Schrödinger equations without a self-conjugate property,, Funkcialaj Ekvacioj, 42 (1999), 311. Google Scholar [6] N. Hayashi and P. I. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equation with cubic nonlinearities,, International Journal of Pure and Applied Mathematics, 3 (2002), 255. Google Scholar [7] N. Hayashi and P. I. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation,, Canadian Journal of Mathematics, 54 (2002), 1065. doi: 10.4153/CJM-2002-039-3. Google Scholar [8] N. Hayashi and P. I. Naumkin, On the asymptotics for cubic nonlinear Schrödinger equations,, Complex Var. Theory Appl., 49 (2004), 339. Google Scholar [9] N. Hayashi and P. I. Naumkin, Nongauge invariant cubic nonlinear Schrödinger equations,, Pac. J. Appl. Math., 1 (2008), 1. Google Scholar [10] N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified Wave Operators for Nonlinear Schrödinger Equations in 1d or 2d,, Electronic Journal of Differential Equations, (2004), 1. Google Scholar [11] N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^{2}(R^n)$spaces for some Schrödinger equations,, Ann. I.H.P. (Phys. Théor.), 48 (1988), 17. Google Scholar [12] N. Hayashi and T. Ozawa, Modified wave operators for the derivative nonlinear Schrödinger equation,, Math. Ann., 298 (1994), 557. doi: 10.1007/BF01459751. Google Scholar [13] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension,, Commun. Math. Phys., 139 (1991), 479. doi: 10.1007/BF02101876. Google Scholar [14] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations,, Commun. Pure Appl. Math., 38 (1985), 685. doi: 10.1002/cpa.3160380516. Google Scholar [15] S. Tonegawa, Global existence for a class of cubic nonlinear Schrödinger equations in one space dimension,, Hokkaido Math. J., 30 (2001), 451. Google Scholar
 [1] Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205 [2] Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 [3] Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003 [4] Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129 [5] Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259 [6] Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051 [7] Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125 [8] Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911 [9] Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104 [10] Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265 [11] Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 [12] Olivier Bourget, Matias Courdurier, Claudio Fernández. Construction of solutions for some localized nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 841-862. doi: 10.3934/dcds.2019035 [13] D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 [14] Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 [15] Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030 [16] Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 [17] Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 [18] Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 [19] Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067 [20] Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

2018 Impact Factor: 1.143