# American Institute of Mathematical Sciences

November  2011, 30(4): 1249-1262. doi: 10.3934/dcds.2011.30.1249

## Multiple solutions for superlinear elliptic systems of Hamiltonian type

 1 Department of Mathematics, Yunnan Normal University, Kunming 650092 Yunnan 2 Department of Mathematics, Zhaotong Teacher’s College, Zhaotong 657000 Yunnan

Received  March 2010 Revised  May 2010 Published  May 2011

This paper is concerned with the following periodic Hamiltonian elliptic system

$\-\Delta \varphi+V(x)\varphi=G_\psi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\-\Delta \psi+V(x)\psi=G_\varphi(x,\varphi,\psi)$ in $\mathbb{R}^N,$
$\varphi(x)\to 0$ and $\psi(x)\to0$ as $|x|\to\infty.$

Assuming the potential $V$ is periodic and $0$ lies in a gap of $\sigma(-\Delta+V)$, $G(x,\eta)$ is periodic in $x$ and superquadratic in $\eta=(\varphi,\psi)$, existence and multiplicity of solutions are obtained via variational approach.
Citation: Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249
##### References:
 [1] N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423. doi: 10.1007/s00209-004-0663-y. Google Scholar [2] N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277. doi: 10.1016/j.jfa.2005.11.010. Google Scholar [3] C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673. doi: 10.1016/S0022-247X(02)00413-4. Google Scholar [4] A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459. Google Scholar [5] A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348. Google Scholar [6] T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51. Google Scholar [7] T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1. doi: 10.1002/mana.200410420. Google Scholar [8] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241. doi: 10.1007/BF01389883. Google Scholar [9] V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693. doi: 10.1090/S0894-0347-1991-1119200-3. Google Scholar [10] V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217. doi: 10.1002/cpa.3160451002. Google Scholar [11] D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973. doi: 10.1090/S0002-9947-03-03257-4. Google Scholar [12] D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97. Google Scholar [13] D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471. doi: 10.1016/j.jfa.2004.09.008. Google Scholar [14] D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211. doi: 10.1016/S0362-546X(97)00548-8. Google Scholar [15] Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007). doi: 10.1142/9789812709639. Google Scholar [16] Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473. doi: 10.1016/j.jde.2007.03.005. Google Scholar [17] Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829. Google Scholar [18] J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32. doi: 10.1006/jfan.1993.1062. Google Scholar [19] W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181. doi: 10.1090/S0002-9947-97-01963-6. Google Scholar [20] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441. Google Scholar [21] G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763. doi: 10.1142/S0219199702000853. Google Scholar [22] G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925. Google Scholar [23] A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160. Google Scholar [24] M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978). Google Scholar [25] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133. Google Scholar [26] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445. Google Scholar [27] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431. Google Scholar [28] J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949. doi: 10.1016/j.na.2009.09.035. Google Scholar [29] M. Willem, "Minimax Theorems,", Birkhäuser, (1996). Google Scholar [30] J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343. Google Scholar [31] F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673. Google Scholar [32] F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77. doi: 10.1051/cocv:2008064. Google Scholar

show all references

##### References:
 [1] N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part,, Math. Z., 248 (2004), 423. doi: 10.1007/s00209-004-0663-y. Google Scholar [2] N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations,, J. Func. Anal., 234 (2006), 277. doi: 10.1016/j.jfa.2005.11.010. Google Scholar [3] C. O. Alves, P. C. Carrião and O. H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in $\mathbbR$N,, J. Math. Anal. Appl., 276 (2002), 673. doi: 10.1016/S0022-247X(02)00413-4. Google Scholar [4] A. I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems,, Nonlinear Differ. Equ. Appl., 12 (2005), 459. Google Scholar [5] A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems,, J. Differential Equations, 191 (2003), 348. Google Scholar [6] T. Bartsch and D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems,, in, 35 (1999), 51. Google Scholar [7] T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory,, Math. Nach., 279 (2006), 1. doi: 10.1002/mana.200410420. Google Scholar [8] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals,, Inven. Math., 52 (1979), 241. doi: 10.1007/BF01389883. Google Scholar [9] V. Coti-Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials,, J. Amer. Math. Soc., 4 (1991), 693. doi: 10.1090/S0894-0347-1991-1119200-3. Google Scholar [10] V. Coti-Zelati and P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbbR$N,, Comm. Pure Appl. Math., 45 (1992), 1217. doi: 10.1002/cpa.3160451002. Google Scholar [11] D. G. De Figueiredo and Y. H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems,, Tran. Amer. Math. Soc., 355 (2003), 2973. doi: 10.1090/S0002-9947-03-03257-4. Google Scholar [12] D. G. De Figueiredo and P. L. Felmer, On superquadratic elliptic systems,, Tran. Amer. Math. Soc., 343 (1994), 97. Google Scholar [13] D. G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems,, J. Func. Anal., 224 (2005), 471. doi: 10.1016/j.jfa.2004.09.008. Google Scholar [14] D. G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211. doi: 10.1016/S0362-546X(97)00548-8. Google Scholar [15] Y. Ding, "Variational Methods for Strongly Indefinite Problems,", Interdisciplinary Mathematical Sciences, 7 (2007). doi: 10.1142/9789812709639. Google Scholar [16] Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system,, J. Differential Equations, 237 (2007), 473. doi: 10.1016/j.jde.2007.03.005. Google Scholar [17] Y. Ding and C. Lee, Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system,, J. Differential Equations, 246 (2009), 2829. Google Scholar [18] J. Hulshof and R. C. A. M. Van de Vorst, Differential systems with strongly variational structure,, J. Func. Anal., 114 (1993), 32. doi: 10.1006/jfan.1993.1062. Google Scholar [19] W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications,, Tran. Amer. Math. Soc., 349 (1997), 3181. doi: 10.1090/S0002-9947-97-01963-6. Google Scholar [20] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations,, Adv. Differential Equations, 3 (1998), 441. Google Scholar [21] G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part,, Comm. Contemp. Math., 4 (2002), 763. doi: 10.1142/S0219199702000853. Google Scholar [22] G. Li and J. Yang, Asymptotically linear elliptic systems,, Comm. Partial Differential Equations, 29 (2004), 925. Google Scholar [23] A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an ellyptic system with Neumann boundary conditions,, J. Differential Equations, 201 (2004), 160. Google Scholar [24] M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators,", Academic Press, (1978). Google Scholar [25] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems,, Math. Z., 209 (1992), 133. Google Scholar [26] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R$N,, Adv. Differential Equations, 5 (2000), 1445. Google Scholar [27] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,, Comm. Partial Differential Equations, 21 (1996), 1431. Google Scholar [28] J. Wang, J. Xu and F. Zhang, Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,, Nonlinear Anal., 72 (2010), 1949. doi: 10.1016/j.na.2009.09.035. Google Scholar [29] M. Willem, "Minimax Theorems,", Birkhäuser, (1996). Google Scholar [30] J. Yang, Nontrivial solutions of semilinear elliptic systems in $\mathbbR$N,, Electron. J. Diff. Eqns., 6 (2001), 343. Google Scholar [31] F. Zhao, L. Zhao and Y. Ding, Multiple solutions for asymptotically linear elliptic systems,, Nonlinear Differ. Equ. Appl., 15 (2008), 673. Google Scholar [32] F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian ellitpic systems,, ESAIM: Control, 16 (2010), 77. doi: 10.1051/cocv:2008064. Google Scholar
 [1] Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107 [2] Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335 [3] Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 [4] Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105 [5] Wenxiong Chen, Congming Li. Indefinite elliptic problems in a domain. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 333-340. doi: 10.3934/dcds.1997.3.333 [6] Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195 [7] Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110 [8] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189 [9] Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383 [10] Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929 [11] B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217 [12] Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 [13] Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227 [14] Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53 [15] Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295 [16] Paula Balseiro, Teresinha J. Stuchi, Alejandro Cabrera, Jair Koiller. About simple variational splines from the Hamiltonian viewpoint. Journal of Geometric Mechanics, 2017, 9 (3) : 257-290. doi: 10.3934/jgm.2017011 [17] Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457 [18] Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133 [19] Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 [20] M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

2018 Impact Factor: 1.143