November  2011, 30(4): 1211-1235. doi: 10.3934/dcds.2011.30.1211

Mathematical retroreflectors

1. 

Department of Mathematics, University of Aveiro, Aveiro 3810-193

Received  May 2010 Revised  August 2010 Published  May 2011

Retroreflectors are optical devices that reverse the direction of incident beams of light. Here we present a collection of billiard type retroreflectors consisting of four objects; three of them are asymptotically perfect retroreflectors, and the fourth one is a retroreflector which is very close to perfect. Three objects of the collection have recently been discovered and published or submitted for publication. The fourth object --- notched angle --- is a new one; a proof of its retroreflectivity is given.
Citation: Alexander Plakhov. Mathematical retroreflectors. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1211-1235. doi: 10.3934/dcds.2011.30.1211
References:
[1]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33. doi: 10.3934/jmd.2011.5.33. Google Scholar

[2]

K. I. Borg, L. H. Söderholm and H. Essén, Force on a spinning sphere moving in a rarefied gas,, Physics of Fluids, 15 (2003), 736. doi: 10.1063/1.1541026. Google Scholar

[3]

L. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802. doi: 10.1063/1.1418763. Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66. Google Scholar

[5]

P. D. F. Gouveia, "Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana,", Ph.D Thesis, (2007). Google Scholar

[6]

P. Gouveia, A. Plakhov and D. Torres, Two-dimensional body of maximum mean resistance,, Applied Math. and Computation, 215 (2009), 37. doi: 10.1016/j.amc.2009.04.030. Google Scholar

[7]

S. G. Ivanov and A. M. Yanshin, Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow,, Fluid Dyn., 15 (1980), 449. doi: 10.1007/BF01089985. Google Scholar

[8]

K. Moe and M. M. Moe, Gas-surface interactions and satellite drag coefficients,, Planet. Space Sci., 53 (2005), 793. doi: 10.1016/j.pss.2005.03.005. Google Scholar

[9]

I. Newton, "Philosophiae Naturalis Principia Mathematica,", "Philosophiae Naturalis Principia Mathematica,", (1687). Google Scholar

[10]

A. Plakhov, Billiards in unbounded domains reversing the direction of motion of a particle,, Russ. Math. Surv., 61 (2006), 179. doi: 10.1070/RM2006v061n01ABEH004308. Google Scholar

[11]

A. Plakhov, Billiards and two-dimensional problems of optimal resistance,, Arch. Ration. Mech. Anal., 194 (2009), 349. doi: 10.1007/s00205-008-0137-1. Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271. doi: 10.1088/0951-7715/20/9/013. Google Scholar

[13]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873. doi: 10.1070/RM2009v064n05ABEH004642. Google Scholar

[14]

S. Tabachnikov, "Billiards,", Paris: Société Mathématique de France, (1995). Google Scholar

[15]

C.-T. Wang, Free molecular flow over a rotating sphere,, AIAA J., 10 (1972), 713. doi: 10.2514/3.50192. Google Scholar

show all references

References:
[1]

P. Bachurin, K. Khanin, J. Marklof and A. Plakhov, Perfect retroreflectors and billiard dynamics,, J. Modern Dynam., 5 (2011), 33. doi: 10.3934/jmd.2011.5.33. Google Scholar

[2]

K. I. Borg, L. H. Söderholm and H. Essén, Force on a spinning sphere moving in a rarefied gas,, Physics of Fluids, 15 (2003), 736. doi: 10.1063/1.1541026. Google Scholar

[3]

L. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802. doi: 10.1063/1.1418763. Google Scholar

[4]

J. E. Eaton, On spherically symmetric lenses,, Trans. IRE Antennas Propag., 4 (1952), 66. Google Scholar

[5]

P. D. F. Gouveia, "Computação de Simetrias Variacionais e Optimização da Resistência Aerodinâmica Newtoniana,", Ph.D Thesis, (2007). Google Scholar

[6]

P. Gouveia, A. Plakhov and D. Torres, Two-dimensional body of maximum mean resistance,, Applied Math. and Computation, 215 (2009), 37. doi: 10.1016/j.amc.2009.04.030. Google Scholar

[7]

S. G. Ivanov and A. M. Yanshin, Forces and moments acting on bodies rotating around a symmetry axis in a free molecular flow,, Fluid Dyn., 15 (1980), 449. doi: 10.1007/BF01089985. Google Scholar

[8]

K. Moe and M. M. Moe, Gas-surface interactions and satellite drag coefficients,, Planet. Space Sci., 53 (2005), 793. doi: 10.1016/j.pss.2005.03.005. Google Scholar

[9]

I. Newton, "Philosophiae Naturalis Principia Mathematica,", "Philosophiae Naturalis Principia Mathematica,", (1687). Google Scholar

[10]

A. Plakhov, Billiards in unbounded domains reversing the direction of motion of a particle,, Russ. Math. Surv., 61 (2006), 179. doi: 10.1070/RM2006v061n01ABEH004308. Google Scholar

[11]

A. Plakhov, Billiards and two-dimensional problems of optimal resistance,, Arch. Ration. Mech. Anal., 194 (2009), 349. doi: 10.1007/s00205-008-0137-1. Google Scholar

[12]

A. Plakhov and P. Gouveia, Problems of maximal mean resistance on the plane,, Nonlinearity, 20 (2007), 2271. doi: 10.1088/0951-7715/20/9/013. Google Scholar

[13]

A. Plakhov, Scattering in billiards and problems of Newtonian aerodynamics,, Russ. Math. Surv., 64 (2009), 873. doi: 10.1070/RM2009v064n05ABEH004642. Google Scholar

[14]

S. Tabachnikov, "Billiards,", Paris: Société Mathématique de France, (1995). Google Scholar

[15]

C.-T. Wang, Free molecular flow over a rotating sphere,, AIAA J., 10 (1972), 713. doi: 10.2514/3.50192. Google Scholar

[1]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[2]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[3]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[4]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[5]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[6]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[7]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[8]

Giuseppe Buttazzo, Faustino Maestre. Optimal shape for elliptic problems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1115-1128. doi: 10.3934/dcds.2011.31.1115

[9]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[10]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[11]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[12]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[13]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[14]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[15]

Pierre-Étienne Druet. Some mathematical problems related to the second order optimal shape of a crystallisation interface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2443-2463. doi: 10.3934/dcds.2015.35.2443

[16]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[17]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[18]

Luigi Montoro. On the shape of the least-energy solutions to some singularly perturbed mixed problems. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1731-1752. doi: 10.3934/cpaa.2010.9.1731

[19]

Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767

[20]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]