November  2011, 30(4): 1191-1210. doi: 10.3934/dcds.2011.30.1191

New entropy conditions for scalar conservation laws with discontinuous flux

1. 

Faculty of Mathematics, University of Montenegro, Cetinjski put bb, 81000 Podgorica

Received  April 2010 Revised  July 2010 Published  May 2011

We propose new Kruzhkov type entropy conditions for one dimensional scalar conservation law with a discontinuous flux. We prove existence and uniqueness of the entropy admissible weak solution to the corresponding Cauchy problem merely under assumptions on the flux which provide the maximum principle. In particular, we allow multiple flux crossings and we do not need any kind of genuine nonlinearity conditions.
Citation: Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191
References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783. doi: 10.1142/S0219891605000622.

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127. doi: 10.3934/nhm.2007.2.127.

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253. doi: 10.1017/S0308210500003863.

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371. doi: 10.1080/03605300500358095.

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684. doi: 10.1137/07069314X.

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387. doi: 10.1007/s10665-007-9148-4.

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425. doi: 10.1137/S0036141093242533.

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127. doi: 10.1142/S0219891609001794.

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223. doi: 10.1007/BF00752112.

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009). doi: 10.1155/2009/279818.

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761. doi: 10.1080/03605309108820822.

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23. doi: 10.1023/A:1011574824970.

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287. doi: 10.1142/S0252959904000299.

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217. doi: 10.1070/SM1970v010n02ABEH002156.

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495. doi: 10.1007/s00205-007-0055-7.

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169. doi: 10.1090/S0894-0347-1994-1201239-3.

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163. doi: 10.3934/nhm.2010.5.163.

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729. doi: 10.1142/S0219891607001343.

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525. doi: 10.1142/S0219891609001915.

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26. doi: 10.1137/080724587.

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643. doi: 10.1007/s00205-009-0217-x.

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335. doi: 10.1016/S0196-8858(82)80010-9.

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181. doi: 10.1007/s002050100157.

show all references

References:
[1]

Adimurthi, G. D. Veerappa Gowda, Conservation laws with discontinuous flux,, J. Math. (Kyoto University), 43 (2003), 27.

[2]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux functions,, J. of Hyperbolic Differ. Equ., 2 (2005), 783. doi: 10.1142/S0219891605000622.

[3]

Adimurthi, S. Mishra and G. D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes,, Netw. Heterog. Media, 2 (2007), 127. doi: 10.3934/nhm.2007.2.127.

[4]

J. Aleksic and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Sciences, 4 (2009), 963.

[5]

B. Andreianov, K. H. Karlsena and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux,, preprint. Available from: , ().

[6]

E. Audusse and B. Perthame, Uniqueness for scalar conservation law via adapted entropies,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253. doi: 10.1017/S0308210500003863.

[7]

F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation law with a flux function involving discontinuous coefficients,, Comm. Partial Differential Equations, 31 (2006), 371. doi: 10.1080/03605300500358095.

[8]

R. Burger, K. H. Karlsen and J. Towers, On Enquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections,, SIAM J. Numer. Anal., 3 (2009), 1684. doi: 10.1137/07069314X.

[9]

R. Burger, A. Garcia, K. H. Karlsen and J. Towers, A family of schemes for kinematic flows with discontinuous flux,, J. Engrg. Math., 60 (2008), 387. doi: 10.1007/s10665-007-9148-4.

[10]

S. Diehl, On scalar conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Math. Anal., 6 (1995), 1425. doi: 10.1137/S0036141093242533.

[11]

S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation,, SIAM J. Appl. Anal., 2 (1996), 388.

[12]

S. Diehl, A uniqueness condition for non-linear convection-diffusion equations with discontinuous coefficients,, J. Hyperbolic Diff. Eq., 6 (2009), 127. doi: 10.1142/S0219891609001794.

[13]

R. J. DiPerna, Measure-valued solutions to conservation laws,, Arch. Ration. Mech. Anal., 88 (1985), 223. doi: 10.1007/BF00752112.

[14]

L. C. Evans, "Weak Convergence Methods in Nonlinear Partial Differential Equations,", AMS, 74 (1990).

[15]

H. Holden, K. Karlsen and D. Mitrovic, Zero diffusion dispersion limits for a scalar conservation law with discontinuous flux function,, International Journal of Differential Equations, (2009) (2009). doi: 10.1155/2009/279818.

[16]

P. Gerard, Microlocal defect measures,, Comm. Partial Differential Equations, 11 (1991), 1761. doi: 10.1080/03605309108820822.

[17]

T. Gimse and N. H. Risebro, Riemann problems with discontinuous flux function,, in Proc. 3rd Int. Conf. Hyperbolic Problems Studentlitteratur, (1991), 488.

[18]

E. Kaasschieter, Solving the Buckley-Leverret equation with gravity in a heterogeneous porous media,, Comput. Geosci., 3 (1999), 23. doi: 10.1023/A:1011574824970.

[19]

K. H. Karslen, N. H. Risebro and J. Towers, $L$1-stability for entropy solutions of nonlinear degenerate parabolic connection-diffusion equations with disc. coeff.,, Skr. K. Nor. Vid. Selsk, 3 (2003), 1.

[20]

K. Karlsen, N. H. Risebro and J. Towers, On a nonlin. degenerate parabolic transport-diff. eq. with a disc. coeff.,, Electronic J. of Differential Equations, 2002 ().

[21]

K. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws,, Communications in Mathematical Sciences 2 (2007), 2 (2007), 253.

[22]

K. Karlsen and J. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux,, Chinese Ann. Math. Ser. B, 3 (2004), 287. doi: 10.1142/S0252959904000299.

[23]

S. N. Kruzhkov, First order quasilinear equations in several independent variables,, Mat. Sb., 81 (1970), 217. doi: 10.1070/SM1970v010n02ABEH002156.

[24]

Y. S. Kwon and A. Vasseur, Strong traces for scalar conservation laws with general flux,, Arch. Rat. Mech. Anal., 3 (2007), 495. doi: 10.1007/s00205-007-0055-7.

[25]

P. L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidim. scalar cons. law and related equations,, J. Amer. Math. Soc., 1 (1994), 169. doi: 10.1090/S0894-0347-1994-1201239-3.

[26]

D. Mitrovic, Estence amd stability of a multidimensional scalar conservation law with discontinuous flux,, Netw. Het. Media, 5 (2010), 163. doi: 10.3934/nhm.2010.5.163.

[27]

E. Yu. Panov, Existence of Strong Traces for Quasi-Solutions of Multidimensional Conservation Laws,, J. of Hyperbolic Differential Equations, 4 (2007), 729. doi: 10.1142/S0219891607001343.

[28]

E. Yu. Panov, On existence and uniqueness of entropy solutions to the Cauchy problem for a conservation law with discontinuous flux,, J. of Hyperbolic Differential Equations, 3 (2009), 525. doi: 10.1142/S0219891609001915.

[29]

E. Yu. Panov, On weak completeness of the set of entropy solutions to a scalar conservation law,, SIAM J. Math. Anal., 1 (2009), 26. doi: 10.1137/080724587.

[30]

E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643. doi: 10.1007/s00205-009-0217-x.

[31]

P. Pedregal, "Parametrized Measures and Variational Principles,", Progress in Nonlinear Partial Differential Equations and Their Applications, 30 (1997).

[32]

B. Perthame, Kinetic approach to systems of conservation laws,, Journées équations aux derivées partielles, (1992).

[33]

L. Tartar, Comp. compactness and application to PDEs,, Nonlin. Anal. and Mech.: Heriot-Watt symposium, IV (1979).

[34]

L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs,, Proc. Roy. Soc. Edinburgh. Sect. A, 3-4 (1990), 3.

[35]

B. Temple, Global solution of the Cauchy problem for a class of 2x2 nonstrictly hyperbolic conservation laws,, Adv. in Appl. Math., 3 (1982), 335. doi: 10.1016/S0196-8858(82)80010-9.

[36]

A. Vasseur, Strong traces for solutions of multidimensional conservation laws,, Arch. Rat. Mech. Anal., 160 (2001), 181. doi: 10.1007/s002050100157.

[1]

Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163

[2]

Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520

[3]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

[4]

Raimund Bürger, Stefan Diehl, María Carmen Martí. A conservation law with multiply discontinuous flux modelling a flotation column. Networks & Heterogeneous Media, 2018, 13 (2) : 339-371. doi: 10.3934/nhm.2018015

[5]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[6]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[7]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[8]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[9]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[10]

Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617

[11]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[12]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[13]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[14]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[15]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[16]

Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151

[17]

Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419

[18]

Luís Balsa Bicho, António Ornelas. Existence of minimizers for nonautonomous highly discontinuous scalar multiple integrals with pointwise constrained gradients. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 439-451. doi: 10.3934/dcds.2011.29.439

[19]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[20]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]