• Previous Article
    Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations
  • DCDS Home
  • This Issue
  • Next Article
    The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms
April  2011, 30(1): 115-135. doi: 10.3934/dcds.2011.30.115

Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay

1. 

Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P.2390 Marrakech, Morocco

2. 

African Institute for Mathematical Sciences (AIMS), 6 Melrose Road, Muizenberg 7945, South Africa

Received  January 2010 Revised  July 2010 Published  February 2011

This work aims to investigate the regularity and the stability of the solutions for a class of partial functional differential equations with infinite delay. Here we suppose that the undelayed part generates an analytic semigroup and the delayed part is continuous with respect to fractional powers of the generator. First, we give a new characterization for the infinitesimal generator of the solution semigroup, which allows us to give necessary and sufficient conditions for the regularity of solutions. Second, we investigate the stability of the semigroup solution. We proved that one of the fundamental and wildly used assumption, in the computing of eigenvalues and eigenvectors, is an immediate consequence of the already considered ones. Finally, we discuss the asymptotic behavior of solutions.
Citation: Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115
References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709. doi: 10.1016/j.na.2009.01.008. Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545. Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995). Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000). Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690. doi: 10.1016/j.na.2005.07.017. Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008. doi: 10.1016/j.na.2008.08.010. Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11. Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991). Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565. doi: 10.1016/S0362-546X(97)00315-5. Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323. Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29. Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983). Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397. doi: 10.1016/0022-247X(76)90052-4. Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129. doi: 10.2307/1998809. Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996). Google Scholar

show all references

References:
[1]

M. Adimy, A. Elazzouzi and K. Ezzinbi, Reduction principe and dynamic behaviors for a class of partial functional differential equations,, Nonlinear Analysis, 71 (2009), 1709. doi: 10.1016/j.na.2009.01.008. Google Scholar

[2]

R. Benkhalti and K. Ezzinbi, Existence and stability in the $\alpha$-norm for some partial functinal differential equations with infinite delay,, Differential and Integral Equations, 19 (2006), 545. Google Scholar

[3]

O . Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H. O. walther, "Delay Equations, Functional, Complex and Nonlinear Analysis,", \textbf{110}, 110 (1995). Google Scholar

[4]

K. J. Engel and R. Nagel, "One-Parameter Semigroups of Linear Evolution Equations,", \textbf{194}, 194 (2000). Google Scholar

[5]

K. Ezzinbi and A. Ouhinou, Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay,, Nonlienar Analysis, 64 (2006), 1690. doi: 10.1016/j.na.2005.07.017. Google Scholar

[6]

K. Ezzinbi and A. Ouhinou, Stability and asymptotic behavior of solutions for some linear partial functional differential equations in critical cases,, Nonlienar Analysis, 70 (2009), 4008. doi: 10.1016/j.na.2008.08.010. Google Scholar

[7]

J. Hale and J. Kato, Phase space for retarded equations with unbounded delay,, Funkcial Ekvac, 21 (1978), 11. Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay,", \textbf{1473}, 1473 (1991). Google Scholar

[9]

T. Naito, J. S. Shin and S. Murakami, On solution semigroups of general functional differential equations,, Nonlinear Analysis, 30 (1997), 4565. doi: 10.1016/S0362-546X(97)00315-5. Google Scholar

[10]

T. Naito, J. S. Shin and S. Murakami, On stability of solutions in linear autonomous functional differential equations,, Funkcialaj Ekvacioj, 43 (2000), 323. Google Scholar

[11]

T. Naito, J. S. Shin and S. Murakami, The generator of the solution semigroup for the general linear functional differential equation,, Bull. Univ.Electro-Communications, 11 (1998), 29. Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", \textbf{44}, 44 (1983). Google Scholar

[13]

C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable,, Journal of Mathematical Analysis and Applications, 56 (1976), 397. doi: 10.1016/0022-247X(76)90052-4. Google Scholar

[14]

C. C. Travis and G. F. Webb, Existence, stability and compactness in the $\alpha-$norm for partial functional differential equations,, Transactions of the American Mathematical Society, 240 (1978), 129. doi: 10.2307/1998809. Google Scholar

[15]

J. Wu, "Theory and Applications of Partial Functional Differential Equations,", \textbf{119}, 119 (1996). Google Scholar

[1]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[2]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[3]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[4]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

[5]

Khalil Ezzinbi, James H. Liu, Nguyen Van Minh. Periodic solutions in fading memory spaces. Conference Publications, 2005, 2005 (Special) : 250-257. doi: 10.3934/proc.2005.2005.250

[6]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[7]

Odo Diekmann, Karolína Korvasová. Linearization of solution operators for state-dependent delay equations: A simple example. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 137-149. doi: 10.3934/dcds.2016.36.137

[8]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[9]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[10]

Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations & Control Theory, 2013, 2 (1) : 119-151. doi: 10.3934/eect.2013.2.119

[11]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[12]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 881-888. doi: 10.3934/dcdss.2020051

[13]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[14]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[15]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[16]

Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115

[17]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[18]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[19]

Alexei A. Ilyin. Lower bounds for the spectrum of the Laplace and Stokes operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 131-146. doi: 10.3934/dcds.2010.28.131

[20]

Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]