April  2011, 29(2): 595-613. doi: 10.3934/dcds.2011.29.595

Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls

1. 

Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63, 35121 Padova, Italy

2. 

Dipartimento di Metodi e Modelli Matematici, per le Scienze Applicate, Via Trieste, 63, 35121 Padova

Received  September 2009 Revised  March 2010 Published  October 2010

We develop a notion of generalized solution to a stochastic differential equation depending in a nonlinear way on a vector--valued stochastic control process $\{U_t\},$ merely of bounded variation, and on its derivative. Our results rely on the concept of Lipschitz continuous graph completion of $\{U_t\}$ and the generalized solution turns out to coincide a.e. with the limit of classical solutions to (1). In the linear case our notion of solution is equivalent to the usual one in distributional sense. We prove that the generalized solution does not depend on the particular graph-completion of the control process $\{U_t\}$ both for vector-valued controls under a suitable commutativity condition and for scalar controls.
Citation: Monica Motta, Caterina Sartori. Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 595-613. doi: 10.3934/dcds.2011.29.595
References:
[1]

L. Alvarez, Singular stochastic control, linear diffusions, and optimal stopping: A class of solvable problems,, SIAM J. Control Optim., 39 (2001), 1697. doi: doi:10.1137/S0363012900367825. Google Scholar

[2]

L. Alvarez, Singular stochastic control in the presence of a state-dependent yield structure,, Stochastic Process. Appl., 86 (2000), 323. doi: doi:10.1016/S0304-4149(99)00102-7. Google Scholar

[3]

A. Bressan, On differential systems with impulsive controls,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 227. Google Scholar

[4]

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls,, Boll. Un. Mat. Ital. B, 7 (1988), 641. Google Scholar

[5]

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields,, Jour. of Optim. Theory and Appl., 7 (1991), 67. doi: doi:10.1007/BF00940040. Google Scholar

[6]

J. R. Dorroh, G. Ferreyra and P. Sundar, A technique for stochastic control problems with unbounded control set,, Jour. of Theoretical Probability, 12 (1999), 255. doi: doi:10.1023/A:1021761030407. Google Scholar

[7]

F. Dufour and B. M. Miller, Generalized solutions in nonlinear stochastic control problems,, SIAM J. Control Optim., 40 (2002), 1724. doi: doi:10.1137/S0363012900374221. Google Scholar

[8]

F. Dufour and B. M. Miller, Singular stochastic control problems,, SIAM J. Control Optim., 43 (2004), 708. doi: doi:10.1137/S0363012902412719. Google Scholar

[9]

R. J. Elliott, "Stochastic Calculus and Applications,", Applications of Mathematics (New York), 18 (1982). Google Scholar

[10]

O. Hájek, Book review: Differential systems involving impulses,, Bull. Americ. Math. Soc., 12 (1985), 272. doi: doi:10.1090/S0273-0979-1985-15377-7. Google Scholar

[11]

S. He, J. Wang and J. Yan, "Semimartingale Theory and Stochastic Calculus,", Science Press, (1992). Google Scholar

[12]

J. Jacod, "Calculus Stochastique et Problémes de Martingales,", Lecture notes in Math., 714 (1979). Google Scholar

[13]

J. Jacod and A. N. Shiryaev, "Limit Theorems for Stochastic Processes,", Second edition, 288 (2003). Google Scholar

[14]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991). Google Scholar

[15]

J. M. Lasry and P. L. Lions, Une classe nouvelle de problèmes singuliers de contrôle stochastique,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 879. doi: doi:10.1016/S0764-4442(00)01740-7. Google Scholar

[16]

J. M. Lasry and P. L. Lions, Towards a self-consistent theory of volatility,, J. Math. Pures Appl., 86 (2006), 541. doi: doi:10.1016/j.matpur.2006.04.006. Google Scholar

[17]

M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls,, Differential Integral Equations, 8 (1995), 269. Google Scholar

[18]

M. Motta and C. Sartori, Finite fuel problem in nonlinear singular stochastic control,, SIAM J. Control Optim., 46 (2007), 1180. doi: doi:10.1137/050637236. Google Scholar

[19]

P. Protter, "Stochastic Integration and Differential Equations. Second Edition,", in, 21 (2004). Google Scholar

[20]

F. Rampazzo, Lie brackets and impulsive controls: An unavoidable connection,, in, 64 (1999), 279. Google Scholar

[21]

D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion,", 2nd edition, 293 (1994). Google Scholar

[22]

H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations,, Ann. of Probability, 6 (1978), 19. doi: doi:10.1214/aop/1176995608. Google Scholar

[23]

H. J. Sussmann, Lie brackets, real analyticity and geometric control,, in, 27 (1982), 1. Google Scholar

show all references

References:
[1]

L. Alvarez, Singular stochastic control, linear diffusions, and optimal stopping: A class of solvable problems,, SIAM J. Control Optim., 39 (2001), 1697. doi: doi:10.1137/S0363012900367825. Google Scholar

[2]

L. Alvarez, Singular stochastic control in the presence of a state-dependent yield structure,, Stochastic Process. Appl., 86 (2000), 323. doi: doi:10.1016/S0304-4149(99)00102-7. Google Scholar

[3]

A. Bressan, On differential systems with impulsive controls,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 227. Google Scholar

[4]

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls,, Boll. Un. Mat. Ital. B, 7 (1988), 641. Google Scholar

[5]

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields,, Jour. of Optim. Theory and Appl., 7 (1991), 67. doi: doi:10.1007/BF00940040. Google Scholar

[6]

J. R. Dorroh, G. Ferreyra and P. Sundar, A technique for stochastic control problems with unbounded control set,, Jour. of Theoretical Probability, 12 (1999), 255. doi: doi:10.1023/A:1021761030407. Google Scholar

[7]

F. Dufour and B. M. Miller, Generalized solutions in nonlinear stochastic control problems,, SIAM J. Control Optim., 40 (2002), 1724. doi: doi:10.1137/S0363012900374221. Google Scholar

[8]

F. Dufour and B. M. Miller, Singular stochastic control problems,, SIAM J. Control Optim., 43 (2004), 708. doi: doi:10.1137/S0363012902412719. Google Scholar

[9]

R. J. Elliott, "Stochastic Calculus and Applications,", Applications of Mathematics (New York), 18 (1982). Google Scholar

[10]

O. Hájek, Book review: Differential systems involving impulses,, Bull. Americ. Math. Soc., 12 (1985), 272. doi: doi:10.1090/S0273-0979-1985-15377-7. Google Scholar

[11]

S. He, J. Wang and J. Yan, "Semimartingale Theory and Stochastic Calculus,", Science Press, (1992). Google Scholar

[12]

J. Jacod, "Calculus Stochastique et Problémes de Martingales,", Lecture notes in Math., 714 (1979). Google Scholar

[13]

J. Jacod and A. N. Shiryaev, "Limit Theorems for Stochastic Processes,", Second edition, 288 (2003). Google Scholar

[14]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991). Google Scholar

[15]

J. M. Lasry and P. L. Lions, Une classe nouvelle de problèmes singuliers de contrôle stochastique,, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 879. doi: doi:10.1016/S0764-4442(00)01740-7. Google Scholar

[16]

J. M. Lasry and P. L. Lions, Towards a self-consistent theory of volatility,, J. Math. Pures Appl., 86 (2006), 541. doi: doi:10.1016/j.matpur.2006.04.006. Google Scholar

[17]

M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls,, Differential Integral Equations, 8 (1995), 269. Google Scholar

[18]

M. Motta and C. Sartori, Finite fuel problem in nonlinear singular stochastic control,, SIAM J. Control Optim., 46 (2007), 1180. doi: doi:10.1137/050637236. Google Scholar

[19]

P. Protter, "Stochastic Integration and Differential Equations. Second Edition,", in, 21 (2004). Google Scholar

[20]

F. Rampazzo, Lie brackets and impulsive controls: An unavoidable connection,, in, 64 (1999), 279. Google Scholar

[21]

D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion,", 2nd edition, 293 (1994). Google Scholar

[22]

H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations,, Ann. of Probability, 6 (1978), 19. doi: doi:10.1214/aop/1176995608. Google Scholar

[23]

H. J. Sussmann, Lie brackets, real analyticity and geometric control,, in, 27 (1982), 1. Google Scholar

[1]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[2]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[3]

Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns. Networks & Heterogeneous Media, 2013, 8 (1) : 261-273. doi: 10.3934/nhm.2013.8.261

[4]

Tyrone E. Duncan. Some topics in stochastic control. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1361-1373. doi: 10.3934/dcdsb.2010.14.1361

[5]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[6]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[7]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[8]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[11]

Chonghu Guan, Xun Li, Zuo Quan Xu, Fahuai Yi. A stochastic control problem and related free boundaries in finance. Mathematical Control & Related Fields, 2017, 7 (4) : 563-584. doi: 10.3934/mcrf.2017021

[12]

Christine Burggraf, Wilfried Grecksch, Thomas Glauben. Stochastic control of individual's health investments. Conference Publications, 2015, 2015 (special) : 159-168. doi: 10.3934/proc.2015.0159

[13]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[14]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[15]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[16]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

[17]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[18]

M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223

[19]

Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035

[20]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]