April  2011, 29(2): 467-484. doi: 10.3934/dcds.2011.29.467

The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives

1. 

Cima-ue, Rua Romão Ramalho 59, P-7000-671 Évora, Portugal

Received  September 2009 Revised  April 2010 Published  October 2010

We prove validity of the classical DuBois-Reymond differential inclusion for the minimizers $y(\cdot) $ of the integral

$\int_{a}^{b}L( x( t) ,x^'( t)) d\,t,\text{ \ }x\( \cdot) \in W^{1,1}((a,b) ,\mathbb{R}^{n}) ,\text{ \ }x(a)=A\,x(b) =B\ \ $(*)


whose velocities are not a.e. constrained by the domain boundary.
   Thus we do not ask ( as preceding results do) the free-velocity times

$ T_{f ree}:=\{ t\in[ a,b] :y^'( t) \in $int$\text{ }dom\ L( y\( t) ,\cdot) \} $

to have "full measure"; on the contrary, "positive measure" of $T_{f ree}$ suffices here to guarantee the above necessary condition.
   One main feature of our result is that $L( S,\xi) =\infty$ freely allowed, hence the domains $dom$$L( S,\cdot) $ may be e.g. compact and (*) can be seen as the variational reformulation of general state-and-velocity constrained optimal control problems.
   Another main feature is the clean generality of our assumptions on $ L( \cdot) :$ any Borel-measurable function $L:\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow[ 0,\infty] $ having $L( \cdot,0) $ $lsc$ and $L( S,\cdot) $ convex $lsc$ $\forall\,S.$
   The nonconvex case is also considered, for $L( S,\cdot) $ almost convex lsc $\forall\,S.$

Citation: Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467
References:
[1]

L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands,, J. Math. Anal. Appl., 142 (1989), 301.

[2]

P. Cannarsa, H. Frankowska and E. M. Marchini, On Bolza optimal control problems with constraints,, Discr. Cont. Dynam. Syst. Ser. B, 11 (2009), 629. doi: doi:10.3934/dcdsb.2009.11.629.

[3]

C. Carlota, S. Chá and A. Ornelas, Existence of Lipschitz minimizers for nonconvex noncoercive autonomous 1-dim integrals,, in preparation., ().

[4]

C. Carlota and S. Chá, Existence of Lipschitz optimal arcs and necessary conditions for autonomous Bolza control problems under state and velocity pointwise constraints,, in preparation., ().

[5]

C. Carlota, Existence of optimal arcs for nonautonomous convex Bolza control problems under pointwise velocity constraints,, in preparation., ().

[6]

C. Carlota and A. Ornelas, Existence of vector minimizers for nonconvex 1-dim integrals with almost convex Lagrangian,, J. Diff. Eqs., 243 (2007), 414.

[7]

A. Cellina and A. Ferriero, Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 20 (2003), 911. doi: doi:10.1016/S0294-1449(03)00010-6.

[8]

A. Cellina and A. Ornelas, Existence of solutions to differential inclusions and to time optimal control problems in the autonomous case,, SIAM J. Control Optim., 42 (2003), 260. doi: doi:10.1137/S0363012902408046.

[9]

L. Cesari, "Optimization, Theory and Applications,", Springer, (1983).

[10]

F. H. Clarke, An indirect method in the calculus of variations,, Trans. Amer. Math. Soc., 336 (1993), 655. doi: doi:10.2307/2154369.

[11]

F. H. Clarke, Necessary conditions in dynamic optimization,, Mem. Amer. Math. Soc., 173 (2005).

[12]

F. H. Clarke, "Necessary Conditions in Optimal Control and in the Calculus of Variations, Differential Equations, Chaos and Variational Problems,", Prog. in Nonlinear Diff. Eq. Appl., 75 (2008), 143.

[13]

G. Dal Maso and H. Frankowska, Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations,, Appl. Math. Optim., 48 (2003), 39. doi: doi:10.1007/s00245-003-0768-4.

[14]

C. Olech, Existence theory in optimal control problems - the underlying ideas,, International Conference on Differential Equations, (1975), 612.

[15]

A. Ornelas, Existence of scalar minimizers for simple convex integrals with autonomous Lagrangian measurable on the state variable,, Nonlinear Anal., 67 (2007), 2485. doi: doi:10.1016/j.na.2006.08.044.

[16]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).

[17]

R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza,, Trans. Amer. Math. Soc., 159 (1971), 1.

[18]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Springer-Verlag, (1997).

[19]

R. B. Vinter, "Optimal Control,", Birkhäuser, (2000).

show all references

References:
[1]

L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands,, J. Math. Anal. Appl., 142 (1989), 301.

[2]

P. Cannarsa, H. Frankowska and E. M. Marchini, On Bolza optimal control problems with constraints,, Discr. Cont. Dynam. Syst. Ser. B, 11 (2009), 629. doi: doi:10.3934/dcdsb.2009.11.629.

[3]

C. Carlota, S. Chá and A. Ornelas, Existence of Lipschitz minimizers for nonconvex noncoercive autonomous 1-dim integrals,, in preparation., ().

[4]

C. Carlota and S. Chá, Existence of Lipschitz optimal arcs and necessary conditions for autonomous Bolza control problems under state and velocity pointwise constraints,, in preparation., ().

[5]

C. Carlota, Existence of optimal arcs for nonautonomous convex Bolza control problems under pointwise velocity constraints,, in preparation., ().

[6]

C. Carlota and A. Ornelas, Existence of vector minimizers for nonconvex 1-dim integrals with almost convex Lagrangian,, J. Diff. Eqs., 243 (2007), 414.

[7]

A. Cellina and A. Ferriero, Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 20 (2003), 911. doi: doi:10.1016/S0294-1449(03)00010-6.

[8]

A. Cellina and A. Ornelas, Existence of solutions to differential inclusions and to time optimal control problems in the autonomous case,, SIAM J. Control Optim., 42 (2003), 260. doi: doi:10.1137/S0363012902408046.

[9]

L. Cesari, "Optimization, Theory and Applications,", Springer, (1983).

[10]

F. H. Clarke, An indirect method in the calculus of variations,, Trans. Amer. Math. Soc., 336 (1993), 655. doi: doi:10.2307/2154369.

[11]

F. H. Clarke, Necessary conditions in dynamic optimization,, Mem. Amer. Math. Soc., 173 (2005).

[12]

F. H. Clarke, "Necessary Conditions in Optimal Control and in the Calculus of Variations, Differential Equations, Chaos and Variational Problems,", Prog. in Nonlinear Diff. Eq. Appl., 75 (2008), 143.

[13]

G. Dal Maso and H. Frankowska, Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations,, Appl. Math. Optim., 48 (2003), 39. doi: doi:10.1007/s00245-003-0768-4.

[14]

C. Olech, Existence theory in optimal control problems - the underlying ideas,, International Conference on Differential Equations, (1975), 612.

[15]

A. Ornelas, Existence of scalar minimizers for simple convex integrals with autonomous Lagrangian measurable on the state variable,, Nonlinear Anal., 67 (2007), 2485. doi: doi:10.1016/j.na.2006.08.044.

[16]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).

[17]

R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza,, Trans. Amer. Math. Soc., 159 (1971), 1.

[18]

R. T. Rockafellar and R. J.-B. Wets, "Variational Analysis,", Springer-Verlag, (1997).

[19]

R. B. Vinter, "Optimal Control,", Birkhäuser, (2000).

[1]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[2]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[3]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[4]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[5]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[6]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[7]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[8]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[9]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[10]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[11]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[12]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[13]

Alexander Blokh. Necessary conditions for the existence of wandering triangles for cubic laminations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 13-34. doi: 10.3934/dcds.2005.13.13

[14]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[15]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[16]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[17]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[18]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[19]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[20]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]