April  2011, 29(2): 403-415. doi: 10.3934/dcds.2011.29.403

On a generalization of the impulsive control concept: Controlling system jumps

1. 

People's Friendship University of Russia, 117198, Moscow, Miklukho-Maklaya str. 6, Russian Federation

2. 

Faculdade de Engenharia da Universidade do Porto, DEEC, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal, Portugal

Received  August 2009 Revised  March 2010 Published  October 2010

This paper concerns the investigation of a general impulsive control problem. The considered impulsive processes are of non-standard type: control processes admit ordinary type controls as the impulse develops. New necessary conditions of optimality in the form of Pontryagin Maximum Principle are obtained. These conditions are applied to a model problem and are shown to yield useful information about optimal control modes.
Citation: Aram Arutyunov, Dmitry Karamzin, Fernando L. Pereira. On a generalization of the impulsive control concept: Controlling system jumps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 403-415. doi: 10.3934/dcds.2011.29.403
References:
[1]

A. V. Arutyunov, "Optimality Conditions: Abnormal and Degenerate Problems,", Math. Appl., (2000). Google Scholar

[2]

A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, A nondegenerate maximum principle for the impulse control problem with state constraints,, SIAM J. Control Optim., 43 (2005), 1812. doi: doi:10.1137/S0363012903430068. Google Scholar

[3]

A. V. Arutyunov and D. Yu. Karamzin, Necessary conditions for minimum in impulsive control problems,, Nonlinear Dynamics and Control, (2004), 205. Google Scholar

[4]

A. V. Arutyunov, D. Yu. Karamzin, and F. L. Pereira, On constrained impulsive control problems,, Sovremennaya Matematika i Ee Prilozheniya, 65 (2009), 654. Google Scholar

[5]

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls,, Boll. Un. Matematica Italiana B, 2 (1988), 641. Google Scholar

[6]

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields,, J. Optim. Theory and Appl., 71 (1991), 67. doi: doi:10.1007/BF00940040. Google Scholar

[7]

V. A. Dykhta and O. N. Samsonyuk, "Optimal Impulse Control and Applications,", Fizmatlit, (2000). Google Scholar

[8]

N. N. Krasovski, "The Theory of Motion Control,", Nauka, (1968). Google Scholar

[9]

A. B. Kurzhanski., Optimal systems with impulse controls,, in, (1975). Google Scholar

[10]

A. B. Kurzhanski and A. N. Daryin, Dynamic programming for impulse controls,, Annual Reviews in Control, 32 (2008), 213. doi: doi:10.1016/j.arcontrol.2008.08.001. Google Scholar

[11]

F. L. Pereira and G. N. Silva, Necessary conditions of optimality for vector-valued impulsive control problems,, Systems and Control Letters, 40 (2000), 205. doi: doi:10.1016/S0167-6911(00)00027-X. Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Gordon and Beach, (1986). Google Scholar

[13]

R. W. Rishel, An extended Pontryagin principle for control systems, whose control laws contain measures,, J. SIAM. Ser. A. Control, 3 (1965), 191. Google Scholar

[14]

G. N. Silva and R. B. Vinter, Measure differential inclusions,, J. Math. Anal. Appl., 202 (1996), 727. doi: doi:10.1006/jmaa.1996.0344. Google Scholar

[15]

R. B. Vinter and F. L. Pereira, A maximum principle for optimal processes with discontinuous trajectories,, SIAM J. Control Optim., 26 (1988), 205. doi: doi:10.1137/0326013. Google Scholar

show all references

References:
[1]

A. V. Arutyunov, "Optimality Conditions: Abnormal and Degenerate Problems,", Math. Appl., (2000). Google Scholar

[2]

A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, A nondegenerate maximum principle for the impulse control problem with state constraints,, SIAM J. Control Optim., 43 (2005), 1812. doi: doi:10.1137/S0363012903430068. Google Scholar

[3]

A. V. Arutyunov and D. Yu. Karamzin, Necessary conditions for minimum in impulsive control problems,, Nonlinear Dynamics and Control, (2004), 205. Google Scholar

[4]

A. V. Arutyunov, D. Yu. Karamzin, and F. L. Pereira, On constrained impulsive control problems,, Sovremennaya Matematika i Ee Prilozheniya, 65 (2009), 654. Google Scholar

[5]

A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls,, Boll. Un. Matematica Italiana B, 2 (1988), 641. Google Scholar

[6]

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields,, J. Optim. Theory and Appl., 71 (1991), 67. doi: doi:10.1007/BF00940040. Google Scholar

[7]

V. A. Dykhta and O. N. Samsonyuk, "Optimal Impulse Control and Applications,", Fizmatlit, (2000). Google Scholar

[8]

N. N. Krasovski, "The Theory of Motion Control,", Nauka, (1968). Google Scholar

[9]

A. B. Kurzhanski., Optimal systems with impulse controls,, in, (1975). Google Scholar

[10]

A. B. Kurzhanski and A. N. Daryin, Dynamic programming for impulse controls,, Annual Reviews in Control, 32 (2008), 213. doi: doi:10.1016/j.arcontrol.2008.08.001. Google Scholar

[11]

F. L. Pereira and G. N. Silva, Necessary conditions of optimality for vector-valued impulsive control problems,, Systems and Control Letters, 40 (2000), 205. doi: doi:10.1016/S0167-6911(00)00027-X. Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Gordon and Beach, (1986). Google Scholar

[13]

R. W. Rishel, An extended Pontryagin principle for control systems, whose control laws contain measures,, J. SIAM. Ser. A. Control, 3 (1965), 191. Google Scholar

[14]

G. N. Silva and R. B. Vinter, Measure differential inclusions,, J. Math. Anal. Appl., 202 (1996), 727. doi: doi:10.1006/jmaa.1996.0344. Google Scholar

[15]

R. B. Vinter and F. L. Pereira, A maximum principle for optimal processes with discontinuous trajectories,, SIAM J. Control Optim., 26 (1988), 205. doi: doi:10.1137/0326013. Google Scholar

[1]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[2]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[3]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[4]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[5]

C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435

[6]

Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

[7]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[8]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[9]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[10]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[11]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[12]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[13]

X. Xiang, Y. Peng, W. Wei. A general class of nonlinear impulsive integral differential equations and optimal controls on Banach spaces. Conference Publications, 2005, 2005 (Special) : 911-919. doi: 10.3934/proc.2005.2005.911

[14]

Y. Peng, X. Xiang. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. Journal of Industrial & Management Optimization, 2008, 4 (1) : 17-32. doi: 10.3934/jimo.2008.4.17

[15]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[16]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[17]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[18]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[19]

Monica Motta. Minimum time problem with impulsive and ordinary controls. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5781-5809. doi: 10.3934/dcds.2018252

[20]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (10)

[Back to Top]