# American Institute of Mathematical Sciences

July  2011, 29(3): 1001-1030. doi: 10.3934/dcds.2011.29.1001

## Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment

 1 Université de Bambey, BP 30 Bambey, Ecole Doctorale de Mathématiques et Informatique, Laboratoire de Mathématiques de la Décision et d'Analyse Numérique, F.A.S.E.G/F.S.T, Senegal 2 Université Européenne de Bretagne, Lab-STICC (UMR CNRS 3192), Université de Bretagne-Sud, Centre Yves Coppens, Campus de Tohannic, F-56017, Vannes, France 3 Université Cheikh Anta Diop de Dakar, BP 16 889, Dakar-Fann. E.D. de Mathématiques et Informatique, Laboratoire de Mathématiques de la Décision et d'Analyse Numérique, F.A.S.E.G/F.S.T, Senegal

Received  January 2010 Revised  July 2010 Published  November 2010

In this paper we build models for short-term, mean-term and long-term dynamics of dune and megariple morphodynamics. They are models that are degenerated parabolic equations which are, moreover, singularly perturbed. We, then give an existence and uniqueness result for the short-term and mean-term models. This result is based on a time-space periodic solution existence result for degenerated parabolic equation that we set out. Finally the short-term model is homogenized.
Citation: Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1001-1030. doi: 10.3934/dcds.2011.29.1001
##### References:
 [1] G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar [2] R. A. Bagnold, The movement of desert sand,, Proceedings of the Royal Society of London A, 157 (1936), 594. doi: 10.1098/rspa.1936.0218. Google Scholar [3] G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasilinear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311. doi: 10.1137/S0036141000369344. Google Scholar [4] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: I-species persistence,, J. Math Biol., 51 (2005), 75. doi: 10.1007/s00285-004-0313-3. Google Scholar [5] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: Ii-biological invasions and pulsating travelling fronts,, J. Math Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006. Google Scholar [6] P. Blondeau, Mechanics of coastal forms,, Ann. Rev. Fluids Mech., 33 (2001), 339. doi: 10.1146/annurev.fluid.33.1.339. Google Scholar [7] M. Bostan, Periodic solutions for evolution equations,, Elec. J. Diff. Equations. Monograph, 3 (2002), 1. Google Scholar [8] F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, J. Math. Anal. Appl., 339 (2008), 384. doi: 10.1016/j.jmaa.2007.06.052. Google Scholar [9] G. P. Dawson, B. Johns and R. L. Soulsby, A numerical model of shallow-water flow over topography,, in, 35 (1983), 267. doi: 10.1016/S0422-9894(08)70504-X. Google Scholar [10] H. J. De Vriend, "Steady Flow in Shallow Channel Bends,", Ph.D. thesis, (1981). Google Scholar [11] F. Engelund and E. Hansen, "Investigation of Flow in Alluvial Streams,", Tech. Report 9, (1966). Google Scholar [12] B. W. Flemming, The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes,, Marine Sandwave Dynamics, (2000), 23. Google Scholar [13] E. Frénod, P. A. Raviart and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic field,, J. Math. Pures et Appl., 80 (2001), 815. doi: 10.1016/S0021-7824(01)01215-6. Google Scholar [14] P. E. Gadd, W. Lavelle and D. J. P. Swift, Estimates of sand transport on the New York shelf using near-bottom current meter observations,, J. Sed. Petrol., 48 (1978), 239. Google Scholar [15] A. Hansbo, Error estimates for the numerical solution of a time-periodic linear parabolic problem,, BIT, 31 (1991), 664. doi: 10.1007/BF01933180. Google Scholar [16] D. Idier, "Dunes et Bancs de Sables du Plateau Continental: Observations in-situ et Modélisation Numérique,", Ph.D. thesis, (2002). Google Scholar [17] D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation,, Geophysical Research Letters, 31 (2004), 1. doi: 10.1029/2004GL019969. Google Scholar [18] B. Johns, R. Soulsby and T. Chesher, The modelling of sand waves evolution resulting from suspended and bed load transport of sediment,, J. Hydraul. Reseach, 28 (1990), 355. doi: 10.1080/00221689009499075. Google Scholar [19] J. Kennedy, The formation of sediment ripples, dunes and antidunes,, Ann. Rev. Fluids Mech., 1 (1969), 147. doi: 10.1146/annurev.fl.01.010169.001051. Google Scholar [20] M. Kono, Remarks on periodic solutions of linear parabolic differential equations of the second order,, Proc. Japan Acad., 42 (1966), 5. doi: 10.3792/pja/1195522166. Google Scholar [21] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", AMS Translation of Mathematical Monographs \textbf{23}, 23 (1968). Google Scholar [22] J.-L. Lions, Remarques sur les équations différentielles ordinaires,, Osaka Math. J., 15 (1963), 131. Google Scholar [23] E. Meyer-Peter and R. Müller, Formulas for bed-load transport,, The Second Meeting of the International Association for Hydraulic Structures, (1948), 39. Google Scholar [24] G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion,, preprint., (). Google Scholar [25] G. Nadin, Reaction-diffusion equations in space-time periodic media,, C. R. Acad. Sci. Paris Ser. I, 345 (2007), 489. Google Scholar [26] G. Namah and J.-M. Roquejoffre, Convergence to periodic fronts in a class of semilinearparabolic equations,, Nonlinear Diff. Equ. Appl., 4 (1997), 521. Google Scholar [27] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043. Google Scholar [28] J. R. Norris, Long-time behaviour of heat flow: Global estimates and exact asymptotics,, Arch. Rat. Mech. Anal., 140 (1997), 161. doi: 10.1007/s002050050063. Google Scholar [29] E. Pardoux, Homogenization of linear and semilinear second order parabolic pdes with periodic coefficients: A probolist approach,, J. Funct. Anal., 167 (1999), 498. doi: 10.1006/jfan.1999.3441. Google Scholar [30] D. G. Park and H. Tanabe, On the asymptotic behavior of solutions of linear parabolic equations in $l^1$ space,, Annali Delle Scuola Normale superiore di Pisa Classe di Scienze, 14 (1987), 587. Google Scholar [31] F. Petitta, Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data,, Elec. J. Diff. Equ., 2008 (2008), 1. Google Scholar [32] H. Tanabe, Convergence to a stationary state of the solution of some kind of differential equations in a banach space,, Proc. Japan Acad., 37 (1961), 127. doi: 10.3792/pja/1195523776. Google Scholar [33] L. C. Van Rijn, "Handbook on Sediment Transport by Current and Waves,", Tech. Report H461:12.1-12.27, (1989), 1. Google Scholar

show all references

##### References:
 [1] G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar [2] R. A. Bagnold, The movement of desert sand,, Proceedings of the Royal Society of London A, 157 (1936), 594. doi: 10.1098/rspa.1936.0218. Google Scholar [3] G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasilinear parabolic equations,, SIAM J. Math. Anal., 32 (2001), 1311. doi: 10.1137/S0036141000369344. Google Scholar [4] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: I-species persistence,, J. Math Biol., 51 (2005), 75. doi: 10.1007/s00285-004-0313-3. Google Scholar [5] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodicity fragmented environment model: Ii-biological invasions and pulsating travelling fronts,, J. Math Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006. Google Scholar [6] P. Blondeau, Mechanics of coastal forms,, Ann. Rev. Fluids Mech., 33 (2001), 339. doi: 10.1146/annurev.fluid.33.1.339. Google Scholar [7] M. Bostan, Periodic solutions for evolution equations,, Elec. J. Diff. Equations. Monograph, 3 (2002), 1. Google Scholar [8] F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, J. Math. Anal. Appl., 339 (2008), 384. doi: 10.1016/j.jmaa.2007.06.052. Google Scholar [9] G. P. Dawson, B. Johns and R. L. Soulsby, A numerical model of shallow-water flow over topography,, in, 35 (1983), 267. doi: 10.1016/S0422-9894(08)70504-X. Google Scholar [10] H. J. De Vriend, "Steady Flow in Shallow Channel Bends,", Ph.D. thesis, (1981). Google Scholar [11] F. Engelund and E. Hansen, "Investigation of Flow in Alluvial Streams,", Tech. Report 9, (1966). Google Scholar [12] B. W. Flemming, The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes,, Marine Sandwave Dynamics, (2000), 23. Google Scholar [13] E. Frénod, P. A. Raviart and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic field,, J. Math. Pures et Appl., 80 (2001), 815. doi: 10.1016/S0021-7824(01)01215-6. Google Scholar [14] P. E. Gadd, W. Lavelle and D. J. P. Swift, Estimates of sand transport on the New York shelf using near-bottom current meter observations,, J. Sed. Petrol., 48 (1978), 239. Google Scholar [15] A. Hansbo, Error estimates for the numerical solution of a time-periodic linear parabolic problem,, BIT, 31 (1991), 664. doi: 10.1007/BF01933180. Google Scholar [16] D. Idier, "Dunes et Bancs de Sables du Plateau Continental: Observations in-situ et Modélisation Numérique,", Ph.D. thesis, (2002). Google Scholar [17] D. Idier, D. Astruc and S. J. M. H. Hulcher, Influence of bed roughness on dune and megaripple generation,, Geophysical Research Letters, 31 (2004), 1. doi: 10.1029/2004GL019969. Google Scholar [18] B. Johns, R. Soulsby and T. Chesher, The modelling of sand waves evolution resulting from suspended and bed load transport of sediment,, J. Hydraul. Reseach, 28 (1990), 355. doi: 10.1080/00221689009499075. Google Scholar [19] J. Kennedy, The formation of sediment ripples, dunes and antidunes,, Ann. Rev. Fluids Mech., 1 (1969), 147. doi: 10.1146/annurev.fl.01.010169.001051. Google Scholar [20] M. Kono, Remarks on periodic solutions of linear parabolic differential equations of the second order,, Proc. Japan Acad., 42 (1966), 5. doi: 10.3792/pja/1195522166. Google Scholar [21] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", AMS Translation of Mathematical Monographs \textbf{23}, 23 (1968). Google Scholar [22] J.-L. Lions, Remarques sur les équations différentielles ordinaires,, Osaka Math. J., 15 (1963), 131. Google Scholar [23] E. Meyer-Peter and R. Müller, Formulas for bed-load transport,, The Second Meeting of the International Association for Hydraulic Structures, (1948), 39. Google Scholar [24] G. Nadin, Existence and uniqueness of the solution of a space-time periodic reaction-diffusion,, preprint., (). Google Scholar [25] G. Nadin, Reaction-diffusion equations in space-time periodic media,, C. R. Acad. Sci. Paris Ser. I, 345 (2007), 489. Google Scholar [26] G. Namah and J.-M. Roquejoffre, Convergence to periodic fronts in a class of semilinearparabolic equations,, Nonlinear Diff. Equ. Appl., 4 (1997), 521. Google Scholar [27] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608. doi: 10.1137/0520043. Google Scholar [28] J. R. Norris, Long-time behaviour of heat flow: Global estimates and exact asymptotics,, Arch. Rat. Mech. Anal., 140 (1997), 161. doi: 10.1007/s002050050063. Google Scholar [29] E. Pardoux, Homogenization of linear and semilinear second order parabolic pdes with periodic coefficients: A probolist approach,, J. Funct. Anal., 167 (1999), 498. doi: 10.1006/jfan.1999.3441. Google Scholar [30] D. G. Park and H. Tanabe, On the asymptotic behavior of solutions of linear parabolic equations in $l^1$ space,, Annali Delle Scuola Normale superiore di Pisa Classe di Scienze, 14 (1987), 587. Google Scholar [31] F. Petitta, Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data,, Elec. J. Diff. Equ., 2008 (2008), 1. Google Scholar [32] H. Tanabe, Convergence to a stationary state of the solution of some kind of differential equations in a banach space,, Proc. Japan Acad., 37 (1961), 127. doi: 10.3792/pja/1195523776. Google Scholar [33] L. C. Van Rijn, "Handbook on Sediment Transport by Current and Waves,", Tech. Report H461:12.1-12.27, (1989), 1. Google Scholar
 [1] Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199 [2] Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 [3] Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47 [4] Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383 [5] Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509 [6] Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483 [7] Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027 [8] Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 [9] Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599 [10] Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897 [11] Changchun Liu, Zhao Wang. Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1087-1104. doi: 10.3934/cpaa.2014.13.1087 [12] Min Chen, Olivier Goubet. Long-time asymptotic behavior of two-dimensional dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 37-53. doi: 10.3934/dcdss.2009.2.37 [13] Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925 [14] Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675 [15] Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 [16] Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223 [17] Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025 [18] Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116 [19] Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873 [20] Masakazu Kato, Yu-Zhu Wang, Shuichi Kawashima. Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension. Kinetic & Related Models, 2013, 6 (4) : 969-987. doi: 10.3934/krm.2013.6.969

2018 Impact Factor: 1.143