
Previous Article
New insights into the classical mechanics of particle systems
 DCDS Home
 This Issue

Next Article
Stable and unstable periodic orbits in complex networks of spiking neurons with delays
Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/GrossPitaevskii equations
1.  Department of Applied Physics and Applied Mathematics, Columbia University, 200 S. W. Mudd, 500 W. 120th St., New York City, NY 10027, United States, United States 
[1] 
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 15711601. doi: 10.3934/cpaa.2016003 
[2] 
Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems  A, 2013, 33 (1) : 726. doi: 10.3934/dcds.2013.33.7 
[3] 
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 21052123. doi: 10.3934/cpaa.2017104 
[4] 
Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems  A, 2001, 7 (3) : 525544. doi: 10.3934/dcds.2001.7.525 
[5] 
Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831856. doi: 10.3934/krm.2011.4.831 
[6] 
César E. Torres Ledesma. Existence and concentration of solutions for a nonlinear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535547. doi: 10.3934/cpaa.2016.15.535 
[7] 
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 116. doi: 10.3934/dcdsb.2006.6.1 
[8] 
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$concentration of the blowup solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119127. doi: 10.3934/mcrf.2011.1.119 
[9] 
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp wellposedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487504. doi: 10.3934/cpaa.2018027 
[10] 
Takafumi Akahori. Low regularity global wellposedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261280. doi: 10.3934/cpaa.2010.9.261 
[11] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems  A, 2007, 19 (1) : 3765. doi: 10.3934/dcds.2007.19.37 
[12] 
Zihua Guo, Yifei Wu. Global wellposedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems  A, 2017, 37 (1) : 257264. doi: 10.3934/dcds.2017010 
[13] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 10231041. doi: 10.3934/cpaa.2007.6.1023 
[14] 
Junichi Segata. Wellposedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems  A, 2010, 27 (3) : 10931105. doi: 10.3934/dcds.2010.27.1093 
[15] 
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems  A, 2002, 8 (3) : 563584. doi: 10.3934/dcds.2002.8.563 
[16] 
Benjamin Dodson. Global wellposedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linearnonlinear decomposition. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 19051926. doi: 10.3934/dcds.2013.33.1905 
[17] 
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 17071731. doi: 10.3934/dcds.2017071 
[18] 
Myeongju Chae, Soonsik Kwon. The stability of nonlinear Schrödinger equations with a potential in high Sobolev norms revisited. Communications on Pure & Applied Analysis, 2016, 15 (2) : 341365. doi: 10.3934/cpaa.2016.15.341 
[19] 
Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 11251138. doi: 10.3934/cpaa.2016.15.1125 
[20] 
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831850. doi: 10.3934/cpaa.2013.12.831 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]