
Previous Article
On the initialvalue problem to the DegasperisProcesi equation with linear dispersion
 DCDS Home
 This Issue

Next Article
Boundary layers in smooth curvilinear domains: Parabolic problems
Singular perturbation systems with stochastic forcing and the renormalization group method
1.  Department of Mathematics and The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405, United States 
2.  Department of Mathematics, University of Southern California, Los Angeles, CA 90089 
[1] 
Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems  B, 2006, 6 (4) : 941955. doi: 10.3934/dcdsb.2006.6.941 
[2] 
Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by spacetime white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607617. doi: 10.3934/cpaa.2007.6.607 
[3] 
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 18191833. doi: 10.3934/dcdsb.2018089 
[4] 
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381392. doi: 10.3934/naco.2015.5.381 
[5] 
Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 9199. doi: 10.3934/proc.2003.2003.91 
[6] 
I. Moise, Roger Temam. Renormalization group method: Application to NavierStokes equation. Discrete & Continuous Dynamical Systems  A, 2000, 6 (1) : 191210. doi: 10.3934/dcds.2000.6.191 
[7] 
Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems  S, 2009, 2 (4) : 783806. doi: 10.3934/dcdss.2009.2.783 
[8] 
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic nonautonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems  A, 2016, 36 (5) : 28872914. doi: 10.3934/dcds.2016.36.2887 
[9] 
Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 15231533. doi: 10.3934/dcdsb.2018056 
[10] 
Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a spacetime white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739751. doi: 10.3934/mcrf.2018032 
[11] 
G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 699715. doi: 10.3934/dcdsb.2007.7.699 
[12] 
Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 18051825. doi: 10.3934/dcdsb.2013.18.1805 
[13] 
Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 175193. doi: 10.3934/dcdsb.2010.13.175 
[14] 
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic nonautonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems  A, 2018, 38 (9) : 47674817. doi: 10.3934/dcds.2018210 
[15] 
SzeBi Hsu, Bernold Fiedler, HsiuHau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 437446. doi: 10.3934/dcdsb.2016.21.437 
[16] 
Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337350. doi: 10.3934/naco.2018022 
[17] 
Marc Massot. Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure. Discrete & Continuous Dynamical Systems  B, 2002, 2 (3) : 433456. doi: 10.3934/dcdsb.2002.2.433 
[18] 
Peter W. Bates, Ji Li, Mingji Zhang. Singular fold with real noise. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 20912107. doi: 10.3934/dcdsb.2016038 
[19] 
Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure & Applied Analysis, 2016, 15 (1) : 185196. doi: 10.3934/cpaa.2016.15.185 
[20] 
Yuguo Lin, Daqing Jiang. Longtime behaviour of a perturbed SIR model by white noise. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 18731887. doi: 10.3934/dcdsb.2013.18.1873 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]