July  2009, 23(3): 937-955. doi: 10.3934/dcds.2009.23.937

Entropy and variational principles for holonomic probabilities of IFS

1. 

Instituto de Matemática, UFRGS, 91509-900, Porto Alegre, Brazil, Brazil

Received  September 2007 Revised  July 2008 Published  November 2008

An IFS ( iterated function system), $([0,1], \tau_{i})$, on the interval $[0,1]$, is a family of continuous functions $\tau_{0},\tau_{1}, ..., \tau_{d-1} : [0,1] \to [0,1]$. Associated to a IFS one can consider a continuous map $\hat{\sigma} : [0,1]\times \Sigma \to [0,1]\times \Sigma$, defined by $\hat{\sigma}(x,w)=(\tau_{X_{1}(w)}(x), \sigma(w))$ where $\Sigma=\{0,1, ..., d-1\}^{\mathbb{N}}$, $\sigma: \Sigma \to \Sigma$ is given by $\sigma(w_{1},w_{2},w_{3},...)=(w_{2},w_{3},w_{4}...)$ and $X_{k} : \Sigma \to \{0,1, ..., n-1\}$ is the projection on the coordinate $k$. A $\rho$-weighted system, $\rho \geq 0$, is a weighted system $([0,1], \tau_{i}, u_{i})$ such that there exists a positive bounded function $h : [0,1] \to \mathbb{R}$ and a probability $\nu $ on $[0,1]$ satisfying $ P_{u}(h)=\rho h, \quad P_{u}^{*}(\nu)=\rho \nu$.
A probability $\hat{\nu}$ on $[0,1]\times \Sigma$ is called holonomic for $\hat{\sigma}$, if, $ \int\, g \circ \hat{\sigma}\, d\hat{\nu}= \int \,g \,d\hat{\nu}, \, \forall g \in C([0,1])$. We denote the set of holonomic probabilities by $\mathcal H$.
For a holonomic probability $\hat{\nu}$ on $[0,1]\times \Sigma$ we define the entropy $h(\hat{\nu})$=inf$_f \in \mathbb{B}^{+} \int \ln(\frac{P_{\psi}f}{\psi f}) d\hat{\nu}\geq 0$, where, $\psi \in \mathbb{B}^{+}$ is a fixed (any one) positive potential.
Finally, we analyze the problem: given $\phi \in \mathbb{B}^{+}$, find solutions of the maximization problem $p(\phi)$= sup$_\hat{\nu} \in \mathcal{H} \{ \,h(\hat{\nu}) + \int \ln(\phi) d\hat{\nu} \,\}.$ We show an example where a holonomic not-$\hat{\sigma}$-invariant probability attains the supremum value. In the last section we consider maximizing probabilities, sub-actions and duality for potentials $A(x,w)$, $(x,w)\in [0,1]\times \Sigma$, for IFS.
Citation: Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937
[1]

Zhanyou Ma, Wuyi Yue, Xiaoli Su. Performance analysis of a Geom/Geom/1 queueing system with variable input probability. Journal of Industrial & Management Optimization, 2011, 7 (3) : 641-653. doi: 10.3934/jimo.2011.7.641

[2]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[3]

H.T. Banks, Jimena L. Davis. Quantifying uncertainty in the estimation of probability distributions. Mathematical Biosciences & Engineering, 2008, 5 (4) : 647-667. doi: 10.3934/mbe.2008.5.647

[4]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[5]

Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics & Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020

[6]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[7]

Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217

[8]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[9]

Fabio A. C. C. Chalub. An asymptotic expression for the fixation probability of a mutant in star graphs. Journal of Dynamics & Games, 2016, 3 (3) : 217-223. doi: 10.3934/jdg.2016011

[10]

Noah H. Rhee, PaweŁ Góra, Majid Bani-Yaghoub. Predicting and estimating probability density functions of chaotic systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 297-319. doi: 10.3934/dcdsb.2017144

[11]

Subhabrata Samajder, Palash Sarkar. Another look at success probability of linear cryptanalysis. Advances in Mathematics of Communications, 2019, 13 (4) : 1-44. doi: 10.3934/amc.2019040

[12]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[13]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[14]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[15]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[16]

William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1241-1251. doi: 10.3934/mbe.2016041

[17]

Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561

[18]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[19]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[20]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]