
Previous Article
Shorttime pattern formation in thin film equations
 DCDS Home
 This Issue

Next Article
Penalization approach to semilinear symmetric hyperbolic problems with dissipative boundary conditions
Topology of some tiling spaces without finite local complexity
1.  Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, United States 
2.  Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, United States 
[1] 
Anna Chiara Lai, Paola Loreti. Selfsimilar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401419. doi: 10.3934/nhm.2015.10.401 
[2] 
Younghwan Son. Substitutions, tiling dynamical systems and minimal selfjoinings. Discrete & Continuous Dynamical Systems  A, 2014, 34 (11) : 48554874. doi: 10.3934/dcds.2014.34.4855 
[3] 
Weronika Biedrzycka, Marta TyranKamińska. Selfsimilar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 1327. doi: 10.3934/dcdsb.2018002 
[4] 
Marco Cannone, Grzegorz Karch. On selfsimilar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801808. doi: 10.3934/krm.2013.6.801 
[5] 
Rostislav Grigorchuk, Volodymyr Nekrashevych. Selfsimilar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323370. doi: 10.3934/jmd.2007.1.323 
[6] 
Christoph Bandt, Helena PeÑa. Polynomial approximation of selfsimilar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems  A, 2017, 37 (9) : 46114623. doi: 10.3934/dcds.2017198 
[7] 
D. G. Aronson. Selfsimilar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems  B, 2012, 17 (6) : 16851691. doi: 10.3934/dcdsb.2012.17.1685 
[8] 
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically selfsimilar dynamics. Conference Publications, 2005, 2005 (Special) : 131141. doi: 10.3934/proc.2005.2005.131 
[9] 
Qiaolin He. Numerical simulation and selfsimilar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 101116. doi: 10.3934/dcdsb.2010.13.101 
[10] 
F. Berezovskaya, G. Karev. Bifurcations of selfsimilar solutions of the FokkerPlank equations. Conference Publications, 2005, 2005 (Special) : 9199. doi: 10.3934/proc.2005.2005.91 
[11] 
Bendong Lou. Selfsimilar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857879. doi: 10.3934/nhm.2012.7.857 
[12] 
Shota Sato, Eiji Yanagida. Singular backward selfsimilar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  S, 2011, 4 (4) : 897906. doi: 10.3934/dcdss.2011.4.897 
[13] 
Shota Sato, Eiji Yanagida. Forward selfsimilar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2010, 26 (1) : 313331. doi: 10.3934/dcds.2010.26.313 
[14] 
L. Olsen. Rates of convergence towards the boundary of a selfsimilar set. Discrete & Continuous Dynamical Systems  A, 2007, 19 (4) : 799811. doi: 10.3934/dcds.2007.19.799 
[15] 
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to selfsimilar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 703716. doi: 10.3934/dcds.2008.21.703 
[16] 
Hyungjin Huh. Selfsimilar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 5360. doi: 10.3934/eect.2018003 
[17] 
Kin Ming Hui. Existence of selfsimilar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems  A, 2019, 39 (2) : 863880. doi: 10.3934/dcds.2019036 
[18] 
Thomas Y. Hou, Ruo Li. Nonexistence of locally selfsimilar blowup for the 3D incompressible NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2007, 18 (4) : 637642. doi: 10.3934/dcds.2007.18.637 
[19] 
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. selfsimilar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 5176. doi: 10.3934/cpaa.2002.1.51 
[20] 
Meiyue Jiang, Juncheng Wei. $2\pi$Periodic selfsimilar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 785803. doi: 10.3934/dcds.2016.36.785 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]