December  2007, 19(4): 761-775. doi: 10.3934/dcds.2007.19.761

On the intersection of homoclinic classes on singular-hyperbolic sets

1. 

Departamento de Matemticas, Universidad Nacional de Colombia, Bogot, D.C., Colombia

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970, Rio de Janeiro, Brazil, Brazil

Received  January 2006 Revised  June 2007 Published  September 2007

We know that two different homoclinic classes contained in the same hyperbolic set are disjoint [12]. Moreover, a connected singular-hyperbolic attracting set with dense periodic orbits and a unique equilibrium is either transitive or the union of two different homoclinic classes [6]. These results motivate the questions of if two different homoclinic classes contained in the same singular-hyperbolic set are disjoint or if the second alternative in [6] cannot occur. Here we give a negative answer for both questions. Indeed we prove that every compact $3$-manifold supports a vector field exhibiting a connected singular-hyperbolic attracting set which has dense periodic orbits, a unique singularity, is the union of two homoclinic classes but is not transitive.
Citation: S. Bautista, C. Morales, M. J. Pacifico. On the intersection of homoclinic classes on singular-hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 761-775. doi: 10.3934/dcds.2007.19.761
[1]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[2]

Aubin Arroyo, Enrique R. Pujals. Dynamical properties of singular-hyperbolic attractors. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 67-87. doi: 10.3934/dcds.2007.19.67

[3]

Carlos Arnoldo Morales. A note on periodic orbits for singular-hyperbolic flows. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 615-619. doi: 10.3934/dcds.2004.11.615

[4]

Enrique R. Pujals. Density of hyperbolicity and homoclinic bifurcations for attracting topologically hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 335-405. doi: 10.3934/dcds.2008.20.335

[5]

Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

[6]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[7]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[8]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[9]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[10]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[11]

Luca Bisconti, Marco Spadini. On the set of harmonic solutions of a class of perturbed coupled and nonautonomous differential equations on manifolds. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1471-1492. doi: 10.3934/cpaa.2017070

[12]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[13]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[14]

Enrique R. Pujals. On the density of hyperbolicity and homoclinic bifurcations for 3D-diffeomorphisms in attracting regions. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 179-226. doi: 10.3934/dcds.2006.16.179

[15]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[16]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[17]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[18]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[19]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[20]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]