October  2007, 17(4): 739-750. doi: 10.3934/dcds.2007.17.739

Nontrivial ordered ω-limit sets in a linear degenerate parabolic equation

1. 

Department of Mathematics I, Wüllnerstr. 5-7, RWTH Aachen, 52056 Aachen, Germany

Received  March 2006 Revised  August 2006 Published  January 2007

The paper deals with the initial-boundary value problem for

$ u_t=a(x) (\Delta u+\lambda_1 u) \qquad $ (*)

with zero Dirichlet data in a smoothly bounded domain $\Omega \subset \R^n$, $n\ge 1$. Here $a$ is positive in $\Omega$ and Hölder continuous in $\bar\Omega$, and $\lambda_1>0$ denotes the principal eigenvalue of $-\Delta$ in $\Omega$ with Dirichlet data. It is shown that if $\int_\Omega \frac{(\dist(x,\partial\Omega))^2}{a(x)}dx=\infty$ then there exist initial data in $W^{1,\infty}(\Omega)$ such that the solution of (*) is bounded but not convergent as $t\to\infty$: It has a totally ordered $\omega$-limit set which is not a singleton. Under the above condition, the occurrence of even unbounded ordered $\omega$-limit sets is demonstrated. Conversely, if $\frac{(\dist(x,\partial\Omega))^2}{a(x)}$ is integrable then any solution emanating from initial data in $W^{1,\infty}(\Omega)$ converges to some stationary solution of (*) as time approaches infinity.

Citation: Michael Winkler. Nontrivial ordered ω-limit sets in a linear degenerate parabolic equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 739-750. doi: 10.3934/dcds.2007.17.739
[1]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[2]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[3]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[4]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[5]

Bruce Kitchens, Michał Misiurewicz. Omega-limit sets for spiral maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 787-798. doi: 10.3934/dcds.2010.27.787

[6]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[7]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[8]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[9]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[10]

Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223

[11]

José Ginés Espín Buendía, Víctor Jiménez Lopéz. A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1143-1173. doi: 10.3934/dcdsb.2019010

[12]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019195

[13]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[14]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[15]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

[16]

Michelle Nourigat, Richard Varro. Conjectures for the existence of an idempotent in $\omega $-polynomial algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1543-1551. doi: 10.3934/dcdss.2011.4.1543

[17]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[18]

Alexandre N. Carvalho, Jan W. Cholewa. Strongly damped wave equations in $W^(1,p)_0 (\Omega) \times L^p(\Omega)$. Conference Publications, 2007, 2007 (Special) : 230-239. doi: 10.3934/proc.2007.2007.230

[19]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[20]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]