# American Institute of Mathematical Sciences

July  2005, 13(4): 941-960. doi: 10.3934/dcds.2005.13.941

## A new upscaling method for the solute transport equations

 1 LSEC, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China, China 2 Department of Mathematics, Nanjing University, Nanjing 210093, China

Received  September 2004 Revised  February 2005 Published  August 2005

This paper proposes a new upscaling method in the simulations of solute transport in heterogeneous media. We provide a detailed convergence analysis of the method under the assumption that the oscillating coefficients are periodic. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain the asymptotic structure of the solutions. Numerical experiments are carried out for solute transport in a porous medium with a random log-normal relative permeability to demonstrate the efficiency and accuracy of the proposed method.
Citation: Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 941-960. doi: 10.3934/dcds.2005.13.941
 [1] Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2527-2551. doi: 10.3934/dcdsb.2015.20.2527 [2] Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 [3] Tehuan Chen, Chao Xu, Zhigang Ren. Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1251-1269. doi: 10.3934/jimo.2018052 [4] Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 [5] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 [6] Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 [7] Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 [8] Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 [9] Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457 [10] X.H. Wu, Y. Efendiev, Thomas Y. Hou. Analysis of upscaling absolute permeability. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 185-204. doi: 10.3934/dcdsb.2002.2.185 [11] Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283 [12] Michael Eden, Michael Böhm. Homogenization of a poro-elasticity model coupled with diffusive transport and a first order reaction for concrete. Networks & Heterogeneous Media, 2014, 9 (4) : 599-615. doi: 10.3934/nhm.2014.9.599 [13] Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303 [14] Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 [15] Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks & Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111 [16] Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955 [17] Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083 [18] Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789 [19] Kundan Kumar, Tycho van Noorden, Iuliu Sorin Pop. Upscaling of reactive flows in domains with moving oscillating boundaries. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 95-111. doi: 10.3934/dcdss.2014.7.95 [20] Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

2018 Impact Factor: 1.143