October  2004, 11(4): 855-866. doi: 10.3934/dcds.2004.11.855

Localization of energy in FPU chains

1. 

Università di Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milano, Italy

2. 

Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy

3. 

Dipartimento di Matematica e Applicazioni, Via R. Cozzi 53, 20126 Milano, Italy

Received  February 2003 Revised  March 2004 Published  September 2004

We revisit the celebrated model of Fermi, Pasta and Ulam with the aim of investigating, by numerical computations, the trend towards equipartition in the thermodynamic limit. We concentrate our attention on a particular class of initial conditions, namely, with all the energy on the first mode or the first few modes. We observe that the approach to equipartition occurs on two different time scales: in a short time the energy spreads up by forming a packet involving all low--frequency modes up to a cutoff frequency $\omega_c$, while a much longer time is required in order to reach equipartition, if any. In this sense one has an energy localization with respect to frequency. The crucial point is that our numerical computations suggest that this phenomenon of a fast formation of a natural packet survives in the thermodynamic limit. More precisely we conjecture that the cutoff frequency $\omega_c$ is a function of the specific energy $\epsilon = E/N$, where $E$ and $N$ are the total energy and the number of particles, respectively. Equivalently, there should exist a function $\epsilon_c(\omega)$, representing the minimal specific energy at which the natural packet extends up to frequency $\omega$. The time required for the fast formation of the natural packet is also investigated.
Citation: Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855
[1]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[2]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

[3]

Peter R. Kramer, Joseph A. Biello, Yuri Lvov. Application of weak turbulence theory to FPU model. Conference Publications, 2003, 2003 (Special) : 482-491. doi: 10.3934/proc.2003.2003.482

[4]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[5]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[6]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[7]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[8]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[9]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[10]

Qi Gong, I. Michael Ross, Wei Kang. A pseudospectral observer for nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 589-611. doi: 10.3934/dcdsb.2007.8.589

[11]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[12]

Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088

[13]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[14]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[15]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[16]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[17]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[18]

Fadia Bekkal-Brikci, Khalid Boushaba, Ovide Arino. Nonlinear age structured model with cannibalism. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 201-218. doi: 10.3934/dcdsb.2007.7.201

[19]

Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241

[20]

Xavier Bardina, Sílvia Cuadrado, Carles Rovira. Coinfection in a stochastic model for bacteriophage systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2019158

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (18)

[Back to Top]