February & March  2004, 11(2&3): 649-666. doi: 10.3934/dcds.2004.11.649

On the profile of solutions for an elliptic problem arising in nonlinear optics

1. 

Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing, 100080, China

2. 

School of Mathematics, The University of New South Wales, Sydney 2052, Australia

3. 

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Received  April 2003 Revised  April 2004 Published  June 2004

We study the profile of solutions of

$-\Delta u + (\lambda - h(x)) u = g(x) (u^{p-1} + f(u))$ in $\ \mathbb R^N,$

$u > 0$ in $\mathbb R^N,$

$u \in H^1(\mathbb R^N),$

where $\lambda > 0$ is a parameter, $h$ and $g$ are nonnegative functions in $L^\infty(\mathbb R^N).$ We obtain the asymptotic behaviour of the least energy solutions or solutions obtained by the minimax principle. From the asymptotic behaviour we conclude that those solutions are asymmetric for $\lambda$ large even if $h$ and $g$ are radially symmetric.

Citation: Daomin Cao, Ezzat S. Noussair, Shusen Yan. On the profile of solutions for an elliptic problem arising in nonlinear optics. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 649-666. doi: 10.3934/dcds.2004.11.649
[1]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[2]

Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure & Applied Analysis, 2011, 10 (2) : 785-802. doi: 10.3934/cpaa.2011.10.785

[3]

E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731

[4]

Liping Wang, Chunyi Zhao. Solutions with clustered bubbles and a boundary layer of an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2333-2357. doi: 10.3934/dcds.2014.34.2333

[5]

Liping Wang, Dong Ye. Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3771-3797. doi: 10.3934/dcds.2015.35.3771

[6]

Liping Wang, Juncheng Wei. Solutions with interior bubble and boundary layer for an elliptic problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 333-351. doi: 10.3934/dcds.2008.21.333

[7]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[8]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[9]

Alina Ostafe, Igor E. Shparlinski, Arne Winterhof. On the generalized joint linear complexity profile of a class of nonlinear pseudorandom multisequences. Advances in Mathematics of Communications, 2010, 4 (3) : 369-379. doi: 10.3934/amc.2010.4.369

[10]

Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11

[11]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[12]

Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247

[13]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[14]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[15]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[16]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[17]

Long Wei. Concentrating phenomena in some elliptic Neumann problem: Asymptotic behavior of solutions. Communications on Pure & Applied Analysis, 2008, 7 (4) : 925-946. doi: 10.3934/cpaa.2008.7.925

[18]

Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411

[19]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[20]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]