
Previous Article
Stabilization for the 3D NavierStokes system by feedback boundary control
 DCDS Home
 This Issue

Next Article
Recurrence in the 2$D$ NavierStokes equations
Remarks concerning modified NavierStokes equations
1.  Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 606077045, United States 
2.  Department of Mathematics, Princeton University, Princeton, NJ 085441000, United States 
[1] 
Pavel I. Plotnikov, Jan Sokolowski. Compressible NavierStokes equations. Conference Publications, 2009, 2009 (Special) : 602611. doi: 10.3934/proc.2009.2009.602 
[2] 
Jan W. Cholewa, Tomasz Dlotko. Fractional NavierStokes equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (8) : 29672988. doi: 10.3934/dcdsb.2017149 
[3] 
Hermenegildo Borges de Oliveira. Anisotropically diffused and damped NavierStokes equations. Conference Publications, 2015, 2015 (special) : 349358. doi: 10.3934/proc.2015.0349 
[4] 
Hyukjin Kwean. Kwak transformation and NavierStokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433446. doi: 10.3934/cpaa.2004.3.433 
[5] 
Vittorino Pata. On the regularity of solutions to the NavierStokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747761. doi: 10.3934/cpaa.2012.11.747 
[6] 
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 403429. doi: 10.3934/dcds.2001.7.403 
[7] 
Igor Kukavica. On regularity for the NavierStokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 13191328. doi: 10.3934/dcds.2010.26.1319 
[8] 
Igor Kukavica. On partial regularity for the NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 717728. doi: 10.3934/dcds.2008.21.717 
[9] 
Shuguang Shao, Shu Wang, WenQing Xu. Global regularity for a model of NavierStokes equations with logarithmic subdissipation. Kinetic & Related Models, 2018, 11 (1) : 179190. doi: 10.3934/krm.2018009 
[10] 
JeanPierre Raymond. Stokes and NavierStokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 15371564. doi: 10.3934/dcdsb.2010.14.1537 
[11] 
Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the NavierStokes equations. Discrete & Continuous Dynamical Systems  S, 2013, 6 (5) : 12771289. doi: 10.3934/dcdss.2013.6.1277 
[12] 
Siegfried Maier, Jürgen Saal. Stokes and NavierStokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 10451063. doi: 10.3934/dcdss.2014.7.1045 
[13] 
Yann Brenier. Approximation of a simple NavierStokes model by monotonic rearrangement. Discrete & Continuous Dynamical Systems  A, 2014, 34 (4) : 12851300. doi: 10.3934/dcds.2014.34.1285 
[14] 
Daoyuan Fang, Ting Zhang. Compressible NavierStokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675694. doi: 10.3934/cpaa.2004.3.675 
[15] 
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized NavierStokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545556. doi: 10.3934/krm.2013.6.545 
[16] 
Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and NavierStokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 27152719. doi: 10.3934/cpaa.2013.12.2715 
[17] 
XueLi Song, YanRen Hou. Attractors for the threedimensional incompressible NavierStokes equations with damping. Discrete & Continuous Dynamical Systems  A, 2011, 31 (1) : 239252. doi: 10.3934/dcds.2011.31.239 
[18] 
Chongsheng Cao. Sufficient conditions for the regularity to the 3D NavierStokes equations. Discrete & Continuous Dynamical Systems  A, 2010, 26 (4) : 11411151. doi: 10.3934/dcds.2010.26.1141 
[19] 
Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for NavierStokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 23792407. doi: 10.3934/dcdsb.2016052 
[20] 
Enrique FernándezCara. Motivation, analysis and control of the variable density NavierStokes equations. Discrete & Continuous Dynamical Systems  S, 2012, 5 (6) : 10211090. doi: 10.3934/dcdss.2012.5.1021 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]