# American Institute of Mathematical Sciences

January & February  2004, 10(1&2): 137-163. doi: 10.3934/dcds.2004.10.137

## Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows

 1 Robert Bosch GMBH, FV/PTS, Postfach 30 02 40, D-70442 Stuttgart, Germany 2 IRS, Universtät Stuttgart, D-70550 Stuttgart, Germany 3 Mathematics Department, Central European University, H-1051 Budapest, Hungary 4 Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, 70550 Stuttgart, Germany

Received  March 2002 Revised  February 2003 Published  October 2003

We consider a two--dimensional coupled transmission problem with the conservation laws for compressible viscous flows, where in a subdomain $\Omega_1$ of the flow--field domain $\Omega$ the coefficients modelling the viscosity and heat conductivity are set equal to a small parameter $\varepsilon>0$. The viscous/viscous coupled problem, say $P_\varepsilon$, is equipped with specific boundary conditions and natural transmission conditions at the artificial interface $\Gamma$ separating $\Omega_1$ and $\Omega \setminus \Omega_1$. Here we choose $\Gamma$ to be a line segment. The solution of $P_\varepsilon$ can be viewed as a candidate for the approximation of the solution of the real physical problem for which the dissipative terms are strongly dominated by the convective part in $\Omega_1$. With respect to the norm of uniform convergence, $P_\varepsilon$ is in general a singular perturbation problem. Following the Vishik--Ljusternik method, we investigate here the boundary layer phenomenon at $\Gamma$. We represent the solution of $P_\varepsilon$ as an asymptotic expansion of order zero, including a boundary layer correction. We can show that the first term of the regular series satisfies a reduced problem, say $P_0$, which includes the inviscid/viscous conservation laws, the same initial conditions as $P_\varepsilon$, specific inviscid/viscous boundary conditions, and transmission conditions expressing the continuity of the normal flux at $\Gamma$. A detailed analysis of the problem for the vector--valued boundary layer correction indicates whether additional local continuity conditions at $\Gamma$ are necessary for $P_0$, defining herewith the reduced coupled problem completely. In addition, the solution of $P_0$ (which can be computed numerically) plus the boundary layer correction at $\Gamma$ (if any) provides an approximation of the solution of $P_\varepsilon$ and, hence, of the physical solution as well. In our asymptotic analysis we mainly use formal arguments, but we are able to develop a rigorous analysis for the separate problem defining the correctors. Numerical results are in agreement with our asymptotic analysis.
Citation: Cristian A. Coclici, Jörg Heiermann, Gh. Moroşanu, W. L. Wendland. Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 137-163. doi: 10.3934/dcds.2004.10.137
 [1] O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131 [2] Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161 [3] John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501 [4] Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014 [5] Takayuki Kubo, Yoshihiro Shibata, Kohei Soga. On some two phase problem for compressible and compressible viscous fluid flow separated by sharp interface. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3741-3774. doi: 10.3934/dcds.2016.36.3741 [6] Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 [7] Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751-794. doi: 10.3934/cpaa.2019037 [8] Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581 [9] Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065 [10] Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032 [11] Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419 [12] Antoine Sellier. Boundary element approach for the slow viscous migration of spherical bubbles. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1045-1064. doi: 10.3934/dcdsb.2011.15.1045 [13] Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491 [14] Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593 [15] Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95 [16] Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193 [17] Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127 [18] Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 [19] Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407 [20] Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

2018 Impact Factor: 1.143