
Previous Article
Diophantine conditions in small divisors and transcendental number theory
 DCDS Home
 This Issue

Next Article
Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules
Noncommutative dynamical systems with two generators and their applications in analysis
1.  Department of Mathematics, Technion, Haifa, 32000 
[1] 
Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete & Continuous Dynamical Systems  A, 2013, 33 (7) : 30113042. doi: 10.3934/dcds.2013.33.3011 
[2] 
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems  B, 2005, 5 (4) : 899916. doi: 10.3934/dcdsb.2005.5.899 
[3] 
Giuseppe Gaeta. On the geometry of twisted prolongations, and dynamical systems. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 119. doi: 10.3934/dcdss.2020070 
[4] 
Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semiratiodependent predatorprey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems  B, 2008, 9 (2) : 267279. doi: 10.3934/dcdsb.2008.9.267 
[5] 
Wen Tan. The regularity of pullback attractor for a nonautonomous pLaplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 529546. doi: 10.3934/dcdsb.2018194 
[6] 
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems  A, 2003, 9 (5) : 12931322. doi: 10.3934/dcds.2003.9.1293 
[7] 
Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 14071419. doi: 10.3934/cpaa.2012.11.1407 
[8] 
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447456. doi: 10.3934/proc.2011.2011.447 
[9] 
Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 789823. doi: 10.3934/dcdsb.2011.15.789 
[10] 
W.J. Beyn, Y.K Zou. Discretizations of dynamical systems with a saddlenode homoclinic orbit. Discrete & Continuous Dynamical Systems  A, 1996, 2 (3) : 351365. doi: 10.3934/dcds.1996.2.351 
[11] 
QHeung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure & Applied Analysis, 2003, 2 (2) : 159170. doi: 10.3934/cpaa.2003.2.159 
[12] 
Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multistate systems based on a system linear integral equation and dynamic programming. Journal of Industrial & Management Optimization, 2017, 13 (5) : 126. doi: 10.3934/jimo.2018188 
[13] 
Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537562. doi: 10.3934/mcrf.2017020 
[14] 
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855859. doi: 10.3934/cpaa.2006.5.855 
[15] 
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 19251932. doi: 10.3934/cpaa.2009.8.1925 
[16] 
Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 18. doi: 10.3934/cpaa.2005.4.1 
[17] 
Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 15331543. doi: 10.3934/dcds.2018121 
[18] 
Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems  A, 2005, 12 (2) : 347354. doi: 10.3934/dcds.2005.12.347 
[19] 
JeanClaude Zambrini. On the geometry of the HamiltonJacobiBellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369387. doi: 10.3934/jgm.2009.1.369 
[20] 
P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692699. doi: 10.3934/proc.2005.2005.692 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]