April  2002, 8(2): 303-317. doi: 10.3934/dcds.2002.8.303

Solitons and Bohmian mechanics

1. 

Dip. di Matematica Applicata, Università di Pisa, Via Bonanno Pisano 25/B, Italy

Revised  October 2001 Published  January 2002

This article proposes a set of ideas concerning the introduction of nonlinear analysis, particularly nonlinear PDE, in the theory of particles. The Quantum Mechanics theory is essentially a linear theory, due mainly to the fact that there was a the lack of nonlinear mathematics at the time of the discoveries in particle physics. The main idea is to perturb the Schroedinger equation by a nonlinear term. This nonlinear term has two main parts, a second order quasilinear differential operator responsible for the smoothing of the solutions and a nonlinear 0-order term with a singularity providing topology to the space. By minimizing the energy functional, solutions to the equation are obtained in each topological class. Then the qualitative properties of the soliton is analyzed. By rescaling arguments, the asymptotic behavior of the static solutions is studied. Next the evolution is studied, deriving stability of the soliton and the guidance formula. In this way the equations of Bohmian Mechanics are obtained. Most proofs are omitted, but in all cases a proper reference is given.
Citation: Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303
[1]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[2]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[3]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[4]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

[5]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[6]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[7]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[8]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[9]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[10]

Cheng Hou Tsang, Boris A. Malomed, Kwok Wing Chow. Exact solutions for periodic and solitary matter waves in nonlinear lattices. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1299-1325. doi: 10.3934/dcdss.2011.4.1299

[11]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[12]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[13]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[14]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[15]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[16]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[17]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[18]

Jibin Li. Family of nonlinear wave equations which yield loop solutions and solitary wave solutions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 897-907. doi: 10.3934/dcds.2009.24.897

[19]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[20]

Andrey Sarychev. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247-270. doi: 10.3934/mcrf.2012.2.247

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]