April  2001, 7(2): 307-318. doi: 10.3934/dcds.2001.7.307

On liquid crystal flows with free-slip boundary conditions

1. 

Department of Mathematics and Center for Materials Physics, Penn State University, University Park, PA 16802, United States

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, United States

Revised  October 2000 Published  January 2001

In this paper, we study a coupled dynamic system describing nematic liquid crystal flows. The system was motivated by the Ericksen-Leslie equations modeling the flow of nematic liquid crystals. The purpose of studying the simplified system is to understand the flow properties of more complicated materials, the material configurations , as well as the interactions between them. Unlike in the previous studies where the Dirichlet boundary conditions are prescribed, we consider here the free-slip boundary conditions which possess a number of distinct advantages. The results in this paper form the analytical background for the forthcoming numerical simulations of the system.
Citation: Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307
[1]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[2]

Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629

[3]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[4]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[5]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[6]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[7]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[8]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[9]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[10]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[11]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[12]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[13]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[14]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[15]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019106

[16]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[17]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[18]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[19]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[20]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]