July  1999, 5(3): 631-638. doi: 10.3934/dcds.1999.5.631

The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

Institute of Mathematics, Chinese Academy of Sciences, Beijing 10080

Received  September 1998 Revised  December 1998 Published  May 1999

In this paper, we prove the zero diffusion limit of 2-D incompressible Navier- Stokes equations with $L^1(\mathcal R^2)$ initial vorticity is still a weak solution of the corresponding Euler equations.
Citation: Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631
[1]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[2]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[3]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[4]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[5]

Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449

[6]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[7]

Cheng Wang. Convergence analysis of the numerical method for the primitive equations formulated in mean vorticity on a Cartesian grid. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1143-1172. doi: 10.3934/dcdsb.2004.4.1143

[8]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[9]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[10]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[11]

Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202

[12]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[13]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[14]

S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423

[15]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[16]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[17]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[18]

Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064

[19]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[20]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]