January  1995, 1(1): 59-76. doi: 10.3934/dcds.1995.1.59

Semilinear degenerate parabolic systems and distributed capacitance models

1. 

Department of Mathematics, The Universit of Texas at Austin, Austin, TX 78712, United States

2. 

Texas Institute for Computational and Applied Mathematics, Department of Mathematics, University of Texas at Austin, Austin, TX 78712

Received  October 1994 Published  December 1994

A two-scale microstructure model of current flow in a medium with continuously distributed capacitance is extended to include nonlinearities in the conductance across the interface between the local capacitors and the global conducting medium. The resulting degenerate system of partial differential equations is shown to be in the form of a semilinear parabolic evolution equation in Hilbert space. It is shown directly that such an equation is equivalent to a subgradient flow and, hence, displays the appropriate parabolic regularizing effects. Various limiting cases are identified and the corresponding convergence results obtained by letting selected parameters tend to infinity.
Citation: Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59
[1]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[2]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-26. doi: 10.3934/dcds.2019226

[3]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[4]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[5]

Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich. EIT in a layered anisotropic medium. Inverse Problems & Imaging, 2018, 12 (3) : 667-676. doi: 10.3934/ipi.2018028

[6]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[7]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-20. doi: 10.3934/dcdsb.2019060

[8]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[9]

Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141

[10]

Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387

[11]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[12]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[13]

Mourad Choulli, El Maati Ouhabaz, Masahiro Yamamoto. Stable determination of a semilinear term in a parabolic equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 447-462. doi: 10.3934/cpaa.2006.5.447

[14]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[15]

Franck Boyer, Víctor Hernández-Santamaría, Luz De Teresa. Insensitizing controls for a semilinear parabolic equation: A numerical approach. Mathematical Control & Related Fields, 2019, 9 (1) : 117-158. doi: 10.3934/mcrf.2019007

[16]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[17]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[18]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[19]

O. Goubet, N. Maaroufi. Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1253-1267. doi: 10.3934/cpaa.2012.11.1253

[20]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]