January  2020, 19(1): 279-292. doi: 10.3934/cpaa.20200015

Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian

1. 

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China

2. 

School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541003, China

3. 

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China

* Corresponding author

Received  December 2018 Revised  March 2019 Published  July 2019

Fund Project: This work was supported by National Natural Science Foundation of China (No.11671287, No.11771105) and Guangxi Natural Science Foundation (No.2017GXNSFFA198012)

In this paper we prove the existence and multiplicity of subharmonic solutions for nonlinear equations involving the singular $ \phi $-Laplacian. Such equations are in particular motivated by the one-dimensional mean curvature problems and by the acceleration of a relativistic particle of mass one at rest moving on a straight line. Our approach is based on phase-plane analysis and an application of the Poincaré-Birkhoff twist theorem.

Citation: Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015
References:
[1]

N. Atakishiev and R. Mir-Kasimov, Generalized coherent states for rela- tivistic model of a linear oscillator, Theor. Math. Phys., 67 (1986), 362-367. Google Scholar

[2]

C. Bereanu and J. Mawhin, Nonlinear Neumann boundary value problems with $\phi$-Laplacian operators, An. Stiint. Univ. Ovidius Constanta Ser. Mat, 12 (2004), 73-82. Google Scholar

[3]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differential Equations, 243 (2007), 536-557. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[4]

C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differ- ential equations with bounded nonlinearities and $\phi$-Laplacian, NoDEA: Nonlinear Differ. Equ. Appl., 15 (2008), 159-168. doi: 10.1007/s00030-007-7004-x. Google Scholar

[5]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\varphi$-Laplacian, J. Fixed Point Theory Appl., 4 (2008), 57-75. doi: 10.1007/s11784-008-0072-7. Google Scholar

[6]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2720. doi: 10.1090/S0002-9939-2011-11101-8. Google Scholar

[7]

A. Boscaggin and G. Feltrin, Postive periodic solutions to an indefinte Minkowski-curvature equation, arXiv: 1805.06659.Google Scholar

[8]

A. Boscaggin and M. Garrione, Sign-changing subharmonic solutions to unforced equations with singular $\phi$-Laplacian, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, 321-329. doi: 10.1007/978-1-4614-7333-6_25. Google Scholar

[9]

T. Ding, Approaches to the Qualitative Theory of Ordinary Differential Equations: Dynamical Systems and Nonlinear Oscilations, Peking University Series in Mathematics, World Scientific Publishing Co. Pte. ltd., Singapore, 2007. Google Scholar

[10]

T. Ding, R. Iannacci and F. Zanolin, On periodic solutions of sublinear Duffing equations, J. Math. Anal. Appl., 158 (1991), 316-332. doi: 10.1016/0022-247X(91)90238-U. Google Scholar

[11]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with su- perquadratic potential, J. Differential Equations, 97 (1992), 328-378. doi: 10.1016/0022-0396(92)90076-Y. Google Scholar

[12]

T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal., 20 (1993), 509-532. doi: 10.1016/0362-546X(93)90036-R. Google Scholar

[13]

W. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983) 341-346. doi: 10.2307/2044730. Google Scholar

[14]

T. Donde and F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, arXiv: 1901.09406.Google Scholar

[15]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1294. doi: 10.1137/0524074. Google Scholar

[16]

A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for s- calar second-order differential equations with asymmetric nonlinearities, J. Differential Equations, 109 (1994), 354-372. doi: 10.1006/jdeq.1994.1055. Google Scholar

[17]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 260 (2016), 2150-2162. doi: 10.1016/j.jde.2015.09.056. Google Scholar

[18]

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential equations in the plane, J. Differential Equations, 252 (2012), 1369-1391. doi: 10.1016/j.jde.2011.08.005. Google Scholar

[19]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602. doi: 10.1515/anona-2017-0040. Google Scholar

[20]

J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. Math., 128 (1988), 139-151. doi: 10.2307/1971464. Google Scholar

[21]

J. Ginocchio, Relativistic symmetries in nuclei and hadrons, Phys. Rep., 414 (2005), 165-261. doi: 10.1016/j.physrep.2005.04.003. Google Scholar

[22]

Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430. doi: 10.1112/S0024610703004563. Google Scholar

[23]

Q. Jiang and C. Tang, Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl., 328 (2007), 380-389. doi: 10.1016/j.jmaa.2006.05.064. Google Scholar

[24]

J. Kim and H. Lee, Nonlinear resonance and chaos in the relativistic phase space for driven nonlinear systems, Phys. Rev. E, 52 (1995), 473-480.Google Scholar

[25]

J. Kim and H. Lee, Relativistic chaos in the driven harmonic oscillator, Phys. Rev. E, 51 (1995), 1579-1581.Google Scholar

[26]

A. Kolovsky, Relativistic chaos for an electron in a standing microwave field, EPL-Europhysics Lette., 41 (1998), 257.Google Scholar

[27]

D. Kulikov and R. Tutik, Oscillator model for the relativistic fermion-boson system, Phys. Lette. A, 372 (2008), 7105-7108.Google Scholar

[28]

J. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475. Google Scholar

[29]

Z. Opial, Sur les solutions périodiques de léquation différentielle $x''+ g(x) = p(t)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8 (1960), 151-156. Google Scholar

[30]

D. Qian, Infinity of Subharmonics for Asymmetric Duffing Equations with the Lazer-Leach-Dancer Condition, J. Differential Equations, 171 (2001), 233-250. doi: 10.1006/jdeq.2000.3847. Google Scholar

[31]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725. doi: 10.1137/S003614100343771X. Google Scholar

[32]

D. Qian, P. J. Torres and P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differential Equations, 266 (2019), 4746-4768. doi: 10.1016/j.jde.2018.10.010. Google Scholar

[33]

C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291-311. doi: 10.1016/S0362-546X(96)00065-X. Google Scholar

show all references

References:
[1]

N. Atakishiev and R. Mir-Kasimov, Generalized coherent states for rela- tivistic model of a linear oscillator, Theor. Math. Phys., 67 (1986), 362-367. Google Scholar

[2]

C. Bereanu and J. Mawhin, Nonlinear Neumann boundary value problems with $\phi$-Laplacian operators, An. Stiint. Univ. Ovidius Constanta Ser. Mat, 12 (2004), 73-82. Google Scholar

[3]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular-Laplacian, J. Differential Equations, 243 (2007), 536-557. doi: 10.1016/j.jde.2007.05.014. Google Scholar

[4]

C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differ- ential equations with bounded nonlinearities and $\phi$-Laplacian, NoDEA: Nonlinear Differ. Equ. Appl., 15 (2008), 159-168. doi: 10.1007/s00030-007-7004-x. Google Scholar

[5]

C. Bereanu and J. Mawhin, Boundary value problems for some nonlinear systems with singular $\varphi$-Laplacian, J. Fixed Point Theory Appl., 4 (2008), 57-75. doi: 10.1007/s11784-008-0072-7. Google Scholar

[6]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2720. doi: 10.1090/S0002-9939-2011-11101-8. Google Scholar

[7]

A. Boscaggin and G. Feltrin, Postive periodic solutions to an indefinte Minkowski-curvature equation, arXiv: 1805.06659.Google Scholar

[8]

A. Boscaggin and M. Garrione, Sign-changing subharmonic solutions to unforced equations with singular $\phi$-Laplacian, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, 321-329. doi: 10.1007/978-1-4614-7333-6_25. Google Scholar

[9]

T. Ding, Approaches to the Qualitative Theory of Ordinary Differential Equations: Dynamical Systems and Nonlinear Oscilations, Peking University Series in Mathematics, World Scientific Publishing Co. Pte. ltd., Singapore, 2007. Google Scholar

[10]

T. Ding, R. Iannacci and F. Zanolin, On periodic solutions of sublinear Duffing equations, J. Math. Anal. Appl., 158 (1991), 316-332. doi: 10.1016/0022-247X(91)90238-U. Google Scholar

[11]

T. Ding and F. Zanolin, Periodic solutions of Duffing's equations with su- perquadratic potential, J. Differential Equations, 97 (1992), 328-378. doi: 10.1016/0022-0396(92)90076-Y. Google Scholar

[12]

T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map approach, Nonlinear Anal., 20 (1993), 509-532. doi: 10.1016/0362-546X(93)90036-R. Google Scholar

[13]

W. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983) 341-346. doi: 10.2307/2044730. Google Scholar

[14]

T. Donde and F. Zanolin, Multiple periodic solutions for one-sided sublinear systems: A refinement of the Poincaré-Birkhoff approach, arXiv: 1901.09406.Google Scholar

[15]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equations with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1294. doi: 10.1137/0524074. Google Scholar

[16]

A. Fonda and M. Ramos, Large-amplitude subharmonic oscillations for s- calar second-order differential equations with asymmetric nonlinearities, J. Differential Equations, 109 (1994), 354-372. doi: 10.1006/jdeq.1994.1055. Google Scholar

[17]

A. Fonda and A. Sfecci, Periodic solutions of weakly coupled superlinear systems, J. Differential Equations, 260 (2016), 2150-2162. doi: 10.1016/j.jde.2015.09.056. Google Scholar

[18]

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential equations in the plane, J. Differential Equations, 252 (2012), 1369-1391. doi: 10.1016/j.jde.2011.08.005. Google Scholar

[19]

A. Fonda and R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal., 8 (2019), 583-602. doi: 10.1515/anona-2017-0040. Google Scholar

[20]

J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. Math., 128 (1988), 139-151. doi: 10.2307/1971464. Google Scholar

[21]

J. Ginocchio, Relativistic symmetries in nuclei and hadrons, Phys. Rep., 414 (2005), 165-261. doi: 10.1016/j.physrep.2005.04.003. Google Scholar

[22]

Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430. doi: 10.1112/S0024610703004563. Google Scholar

[23]

Q. Jiang and C. Tang, Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems, J. Math. Anal. Appl., 328 (2007), 380-389. doi: 10.1016/j.jmaa.2006.05.064. Google Scholar

[24]

J. Kim and H. Lee, Nonlinear resonance and chaos in the relativistic phase space for driven nonlinear systems, Phys. Rev. E, 52 (1995), 473-480.Google Scholar

[25]

J. Kim and H. Lee, Relativistic chaos in the driven harmonic oscillator, Phys. Rev. E, 51 (1995), 1579-1581.Google Scholar

[26]

A. Kolovsky, Relativistic chaos for an electron in a standing microwave field, EPL-Europhysics Lette., 41 (1998), 257.Google Scholar

[27]

D. Kulikov and R. Tutik, Oscillator model for the relativistic fermion-boson system, Phys. Lette. A, 372 (2008), 7105-7108.Google Scholar

[28]

J. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475. Google Scholar

[29]

Z. Opial, Sur les solutions périodiques de léquation différentielle $x''+ g(x) = p(t)$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8 (1960), 151-156. Google Scholar

[30]

D. Qian, Infinity of Subharmonics for Asymmetric Duffing Equations with the Lazer-Leach-Dancer Condition, J. Differential Equations, 171 (2001), 233-250. doi: 10.1006/jdeq.2000.3847. Google Scholar

[31]

D. Qian and P. J. Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36 (2005), 1707-1725. doi: 10.1137/S003614100343771X. Google Scholar

[32]

D. Qian, P. J. Torres and P. Wang, Periodic solutions of second order equations via rotation numbers, J. Differential Equations, 266 (2019), 4746-4768. doi: 10.1016/j.jde.2018.10.010. Google Scholar

[33]

C. Rebelo, A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems, Nonlinear Anal., 29 (1997), 291-311. doi: 10.1016/S0362-546X(96)00065-X. Google Scholar

Figure 1.  The relations between the fundamental period $ T_h $ and "energy" $ h $ with various potentials: (a) Toda potential $ G(x) = k(x+{\mathrm{e}}^{-x}) $ with $ k = 1 $; (b) Sublinear potential $ G(x) = \frac{4}{5}|x|^{5/4} $; (c) Harmonic potential $ G(x) = \frac{1}{2}x^{2} $; (d) Superlinear potential $ G(x) = \frac{2}{5}|x|^{5/2} $
[1]

Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102

[2]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[3]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[4]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[5]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[6]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[7]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[8]

Yanmin Niu, Xiong Li. An application of Moser's twist theorem to superlinear impulsive differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 431-445. doi: 10.3934/dcds.2019017

[9]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[10]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear coercive Neumann problems. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1957-1974. doi: 10.3934/cpaa.2009.8.1957

[11]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[12]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiple solutions for a class of nonlinear Neumann eigenvalue problems. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1491-1512. doi: 10.3934/cpaa.2014.13.1491

[13]

Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010

[14]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic & Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[15]

Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303

[16]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[17]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[18]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[19]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[20]

Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756

2018 Impact Factor: 0.925

Article outline

Figures and Tables

[Back to Top]