January  2020, 19(1): 1-18. doi: 10.3934/cpaa.2020001

Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats

1. 

Department of Mathematics, National Taiwan University, National Center for Theoretical Sciences, Taipei, Taiwan

2. 

Department of Applied Mathematics, National University of Tainan, Tainan, Taiwan

3. 

Department of Mathematics, National Taiwan University, Taipei, Taiwan

4. 

Department of Applied Mathematics, National Chiao Tung University, Taiwan

* Corresponding author

Received  December 2017 Revised  March 2019 Published  July 2019

Fund Project: The research of C.-C. Chen is partly supported by the grant 102-2115-M-002-011-MY3 of Ministry of Science and Technology, Taiwan. The research of L.-C. Hung is partly supported by the grant 104EFA0101550 of Ministry of Science and Technology, Taiwan. The research of C.-H. Wu is partly supported by the grant MOST 105-2628-M-024-001-MY2 and 107-2636-M-024-001 of Ministry of Science and Technology, Taiwan and National Center for Theoretical Science (NCTS)

We are concerned with the coexistence states of the diffusive Lotka-Volterra system of two competing species when the growth rates of the two species depend periodically on the spacial variable. For the one-dimensional problem, we employ the generalized Jacobi elliptic function method to find semi-exact solutions under certain conditions on the parameters. In addition, we use the sine function to construct a pair of upper and lower solutions and obtain a solution of the above-mentioned system. Next, we provide a sufficient condition for the existence of pulsating fronts connecting two semi-trivial states by applying the abstract theory regarding monotone semiflows. Some numerical simulations are also included.

Citation: Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure & Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001
References:
[1]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅰ – Influence of periodic heterogeneous environment on species persistence,, J. Math. Biology, 51 (2005), 75-113. doi: 10.1007/s00285-004-0313-3. Google Scholar

[2]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model : Ⅱ - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84 (2005), 1101-1146. doi: 10.1016/j.matpur.2004.10.006. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Chichester, UK: Wiley, 2003. doi: 10.1002/0470871296. Google Scholar

[4]

C.-C. ChenL.-C. HungM. MimuraM. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206. Google Scholar

[5]

C.-C. ChenL.-C. HungM. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669. doi: 10.3934/dcdsb.2012.17.2653. Google Scholar

[6]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. Google Scholar

[7]

E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Physics Letters A, 305 (2002), 383-392. doi: 10.1016/S0375-9601(02)01516-5. Google Scholar

[8]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939. Google Scholar

[9]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Funct. Anal., 272 (2017), 4222-4262. doi: 10.1016/j.jfa.2017.02.028. Google Scholar

[10]

M. Freidlin and J. Gartner, On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl., 20 (1979), 1282-1286. Google Scholar

[11]

L. Girardin, Competition in periodic media: Ⅰ-Existence of pulsating fronts, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 1341-1360. doi: 10.3934/dcdsb.2017065. Google Scholar

[12]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity, Ⅰ, Communications on Pure and Applied Mathematics, 69 (2016), 981-1014. doi: 10.1002/cpa.21596. Google Scholar

[13]

Y.-L. Huang and C.-H. Wu, Positive steady states of reaction-diffusion-advection competition models in periodic environment, J. Math. Anal. Appl., 453 (2017), 724-745. doi: 10.1016/j.jmaa.2017.04.026. Google Scholar

[14]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus LotkaVolterra dynamics, J. Differential Equations, 185 (2002), 97-136. doi: 10.1006/jdeq.2001.4157. Google Scholar

[15]

K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712. doi: 10.1137/120869481. Google Scholar

[16]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[18]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in, Tutorials in Mathematical Biosciences, Ⅳ, Lecture Notes in Math. 1922, Springer, Berlin, 2008, 171–205. doi: 10.1007/978-3-540-74331-6_5. Google Scholar

[19]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270. Google Scholar

[21]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dynamics and Differential Equations, 29 (2017), 41-66. doi: 10.1007/s10884-015-9426-1. Google Scholar

[22]

H. Zhang, Extended Jacobi elliptic function expansion method and its applications, Communications in Nonlinear Science and Numerical Simulation, 12, 627–635. doi: 10.1016/j.cnsns.2005.08.003. Google Scholar

show all references

References:
[1]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: Ⅰ – Influence of periodic heterogeneous environment on species persistence,, J. Math. Biology, 51 (2005), 75-113. doi: 10.1007/s00285-004-0313-3. Google Scholar

[2]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model : Ⅱ - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84 (2005), 1101-1146. doi: 10.1016/j.matpur.2004.10.006. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Chichester, UK: Wiley, 2003. doi: 10.1002/0470871296. Google Scholar

[4]

C.-C. ChenL.-C. HungM. MimuraM. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206. Google Scholar

[5]

C.-C. ChenL.-C. HungM. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669. doi: 10.3934/dcdsb.2012.17.2653. Google Scholar

[6]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120. Google Scholar

[7]

E. Fan and J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Physics Letters A, 305 (2002), 383-392. doi: 10.1016/S0375-9601(02)01516-5. Google Scholar

[8]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939. Google Scholar

[9]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Funct. Anal., 272 (2017), 4222-4262. doi: 10.1016/j.jfa.2017.02.028. Google Scholar

[10]

M. Freidlin and J. Gartner, On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl., 20 (1979), 1282-1286. Google Scholar

[11]

L. Girardin, Competition in periodic media: Ⅰ-Existence of pulsating fronts, Discrete and Continuous Dynamical Systems-Series B, 22 (2017), 1341-1360. doi: 10.3934/dcdsb.2017065. Google Scholar

[12]

X. He and W.-M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity, Ⅰ, Communications on Pure and Applied Mathematics, 69 (2016), 981-1014. doi: 10.1002/cpa.21596. Google Scholar

[13]

Y.-L. Huang and C.-H. Wu, Positive steady states of reaction-diffusion-advection competition models in periodic environment, J. Math. Anal. Appl., 453 (2017), 724-745. doi: 10.1016/j.jmaa.2017.04.026. Google Scholar

[14]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus LotkaVolterra dynamics, J. Differential Equations, 185 (2002), 97-136. doi: 10.1006/jdeq.2001.4157. Google Scholar

[15]

K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712. doi: 10.1137/120869481. Google Scholar

[16]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[17]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426. doi: 10.1016/j.jde.2005.05.010. Google Scholar

[18]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in, Tutorials in Mathematical Biosciences, Ⅳ, Lecture Notes in Math. 1922, Springer, Berlin, 2008, 171–205. doi: 10.1007/978-3-540-74331-6_5. Google Scholar

[19]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971972. Google Scholar

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270. Google Scholar

[21]

X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, J. Dynamics and Differential Equations, 29 (2017), 41-66. doi: 10.1007/s10884-015-9426-1. Google Scholar

[22]

H. Zhang, Extended Jacobi elliptic function expansion method and its applications, Communications in Nonlinear Science and Numerical Simulation, 12, 627–635. doi: 10.1016/j.cnsns.2005.08.003. Google Scholar

Figure 1.  The profile of $ \phi(x) $
Figure 2.  The profiles of $ u $ (red), $ v $ (green), $ m_1 $ (blue) and $ m_2 $ (cyan)
Figure 3.  The profiles of $ u $ (red), $ v $ (green), $ m_1 $ (blue) and $ m_2 $ (cyan)
Figure 4.  $ \frac{c_{22}}{c_{12}} = \frac{1}{3} $ (red), $ \frac{m_2(x)}{m_1(x)} $ (green) and $ \frac{c_{21}}{c_{11}} = 2 $ (blue), where $ \frac{m_2(x)}{m_1(x)} = \frac{18 \left(20+3 \sqrt{3}\right) \phi (x)+8 \left(26+9\sqrt{17}\right)}{27 \left(24+\sqrt{3}+2 \sqrt{51}\right) \phi(x)+36 \left(18+\sqrt{17}\right)} $ and $ \phi = \phi(x) $ is the solution of (17) with $ \phi'(0) = \frac{2\sqrt{2}}{9} $
Figure 5.  The profile of the long time behavior of the solution with initial data in (42)
Figure 6.  The profile of the long time behavior of the solution with initial data in (43)
Figure 7.  The spreading of $ u $ occurs
Figure 8.  The profile of the long time behavior of Example 2 shows $ u $ invades $ v $ eventually
Figure 9.  The profile of the long time behavior of Example 3 with $ h = 0.01 $
[1]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[4]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[5]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[6]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[7]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[8]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[9]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[10]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[11]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[12]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[13]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[14]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[15]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[16]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[17]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[18]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[19]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[20]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (64)
  • HTML views (84)
  • Cited by (0)

[Back to Top]