• Previous Article
    Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term
  • CPAA Home
  • This Issue
  • Next Article
    Stability of solutions to the Riemann problem for a thin film model of a perfectly soluble anti-surfactant solution
November  2019, 18(6): 3351-3365. doi: 10.3934/cpaa.2019151

A note on multiplicity of solutions near resonance of semilinear elliptic equations

1. 

School of Mathematics, Tianjin University, Tianjin, 300072, China

2. 

Department of Mathematics, Wenzhou University, Wenzhou, Zhejiang, 325035, China

* Corresponding author

Received  November 2018 Revised  February 2019 Published  May 2019

Fund Project: This work is supported by NSF of China 11471240, 11871368

In this paper we are concerned with the multiplicity of solutions near resonance for the following nonlinear equation:
$ -\Delta u = \lambda u+f(x,u) $
associated with the Dirichlet boundary condition, where
$ f $
satisfies some appropriate conditions. We will treat this problem in the framework of dynamical systems. It will be shown that there exist a one-sided neighborhood
$ \Lambda_- $
of the eigenvalue
$ \mu_k $
of the Laplacian operator and a dense subset
$ {\mathcal D} $
of
$ \mathbb{R} $
such that the equation has at least four distinct nontrivial solutions generically for
$ \lambda\in\Lambda_- \cap {\mathcal D} $
.
Citation: Jinlong Bai, Desheng Li, Chunqiu Li. A note on multiplicity of solutions near resonance of semilinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3351-3365. doi: 10.3934/cpaa.2019151
References:
[1]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. doi: 10.1007/BFb0087685. Google Scholar

[2]

X. Chang and Y. Li, Existence and multiplicity of nontrivial solutions for semilinear elliptic Dirichlet problems across resonance, Topol. Methods Nonlinear Anal., 36 (2010), 285-310. Google Scholar

[3]

R. ChiappinelliJ. Mawhin and R. Nugari, Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. TMA, 18 (1992), 1099-1112. doi: 10.1016/0362-546X(92)90155-8. Google Scholar

[4]

C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. doi: 10.1090/cbms/038. Google Scholar

[5]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61. doi: 10.2307/1995770. Google Scholar

[6]

F. de Paiva and E. Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl., 342 (2008), 638-650. doi: 10.1016/j.jmaa.2007.12.053. Google Scholar

[7]

M. FilippakisL. Gasiński and N. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal. TMA, 61 (2005), 61-75. doi: 10.1016/j.na.2004.11.012. Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer Verlag, Berlin, 1981. doi: 10.1007/BFb0089647. Google Scholar

[9]

C. LiD. Li and Z. Zhang, Dynamic bifurcation from infinity of nonlinear evolution equations, SIAM J. Appl. Dyn. Syst., 16 (2017), 1831-1868. doi: 10.1137/16M1107358. Google Scholar

[10]

D. Li, G. Shi and X. Song, Linking theorems of local semiflows on complete metric spaces, arXiv: 1312.1868.Google Scholar

[11]

D. Li and Z. Wang, Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621. doi: 10.1512/iumj.2018.67.7292. Google Scholar

[12]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science-A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.Google Scholar

[13]

T. Ma and S. Wang, Dynamic bifurcation of nonlinear evolution equations, Chinese Ann. Math. Ser. B, 26 (2005), 185-206. doi: 10.1142/S0252959905000166. Google Scholar

[14]

E. Massa and R. Rossato, Multiple solutions for an elliptic system near resonance, J. Math. Anal. Appl., 420 (2014), 1228-1250. doi: 10.1016/j.jmaa.2014.06.043. Google Scholar

[15]

J. Mawhin and K. Schmitt, Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math., 14 (1988), 138-146. doi: 10.1007/BF03323221. Google Scholar

[16]

C. McCord, Poincaré-Lefschetz duality for the homolopy Conley index, Trans. Amer. Math. Soc., 329 (1992), 233-252. doi: 10.2307/2154086. Google Scholar

[17]

K. Mischaikow and M. Mrozek, Conley Index, Handbook of Dynamical Systems, vol. 2, Elsevier, New York, 2002,393-460. doi: 10.1016/S1874-575X(02)80030-3. Google Scholar

[18]

M. Mrozek and R. Srzednicki, On time-duality of the Conley index, Results Math., 24 (1993), 161-167. doi: 10.1007/BF03322325. Google Scholar

[19]

N. Papageorgiou and F. Papalini, Multiple solutions for nearly resonant nonlinear Dirichlet problems, Potential Anal., 37 (2012), 247-279. doi: 10.1007/s11118-011-9255-8. Google Scholar

[20]

K. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-72833-4. Google Scholar

[21]

J. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4 (1979), 293-319. doi: 10.1080/03605307908820096. Google Scholar

[22]

K. Schmitt and Z. Wang, On bifurcation from infinity for potential operators, Differential and Integral Equations, 4 (1991), 933-943. Google Scholar

[23]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. Google Scholar

[24]

J. Su and C. Tang, Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues, Nonlinear Anal. TMA, 44 (2001), 311-321. doi: 10.1016/S0362-546X(99)00265-5. Google Scholar

show all references

References:
[1]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. doi: 10.1007/BFb0087685. Google Scholar

[2]

X. Chang and Y. Li, Existence and multiplicity of nontrivial solutions for semilinear elliptic Dirichlet problems across resonance, Topol. Methods Nonlinear Anal., 36 (2010), 285-310. Google Scholar

[3]

R. ChiappinelliJ. Mawhin and R. Nugari, Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. TMA, 18 (1992), 1099-1112. doi: 10.1016/0362-546X(92)90155-8. Google Scholar

[4]

C. Conley, Isolated Invariant Sets and the Morse Index, Regional Conference Series in Mathematics 38, Amer. Math. Soc., Providence RI, 1978. doi: 10.1090/cbms/038. Google Scholar

[5]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc., 158 (1971), 35-61. doi: 10.2307/1995770. Google Scholar

[6]

F. de Paiva and E. Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl., 342 (2008), 638-650. doi: 10.1016/j.jmaa.2007.12.053. Google Scholar

[7]

M. FilippakisL. Gasiński and N. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal. TMA, 61 (2005), 61-75. doi: 10.1016/j.na.2004.11.012. Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math. 840, Springer Verlag, Berlin, 1981. doi: 10.1007/BFb0089647. Google Scholar

[9]

C. LiD. Li and Z. Zhang, Dynamic bifurcation from infinity of nonlinear evolution equations, SIAM J. Appl. Dyn. Syst., 16 (2017), 1831-1868. doi: 10.1137/16M1107358. Google Scholar

[10]

D. Li, G. Shi and X. Song, Linking theorems of local semiflows on complete metric spaces, arXiv: 1312.1868.Google Scholar

[11]

D. Li and Z. Wang, Local and global dynamic bifurcations of nonlinear evolution equations, Indiana Univ. Math. J., 67 (2018), 583-621. doi: 10.1512/iumj.2018.67.7292. Google Scholar

[12]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science-A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.Google Scholar

[13]

T. Ma and S. Wang, Dynamic bifurcation of nonlinear evolution equations, Chinese Ann. Math. Ser. B, 26 (2005), 185-206. doi: 10.1142/S0252959905000166. Google Scholar

[14]

E. Massa and R. Rossato, Multiple solutions for an elliptic system near resonance, J. Math. Anal. Appl., 420 (2014), 1228-1250. doi: 10.1016/j.jmaa.2014.06.043. Google Scholar

[15]

J. Mawhin and K. Schmitt, Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math., 14 (1988), 138-146. doi: 10.1007/BF03323221. Google Scholar

[16]

C. McCord, Poincaré-Lefschetz duality for the homolopy Conley index, Trans. Amer. Math. Soc., 329 (1992), 233-252. doi: 10.2307/2154086. Google Scholar

[17]

K. Mischaikow and M. Mrozek, Conley Index, Handbook of Dynamical Systems, vol. 2, Elsevier, New York, 2002,393-460. doi: 10.1016/S1874-575X(02)80030-3. Google Scholar

[18]

M. Mrozek and R. Srzednicki, On time-duality of the Conley index, Results Math., 24 (1993), 161-167. doi: 10.1007/BF03322325. Google Scholar

[19]

N. Papageorgiou and F. Papalini, Multiple solutions for nearly resonant nonlinear Dirichlet problems, Potential Anal., 37 (2012), 247-279. doi: 10.1007/s11118-011-9255-8. Google Scholar

[20]

K. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-72833-4. Google Scholar

[21]

J. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations, 4 (1979), 293-319. doi: 10.1080/03605307908820096. Google Scholar

[22]

K. Schmitt and Z. Wang, On bifurcation from infinity for potential operators, Differential and Integral Equations, 4 (1991), 933-943. Google Scholar

[23]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. Google Scholar

[24]

J. Su and C. Tang, Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues, Nonlinear Anal. TMA, 44 (2001), 311-321. doi: 10.1016/S0362-546X(99)00265-5. Google Scholar

[1]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[2]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[3]

Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431

[4]

Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024

[5]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[6]

Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056

[7]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[8]

Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991

[9]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[10]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[11]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[12]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[13]

David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335

[14]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[15]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[16]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-23. doi: 10.3934/dcds.2019227

[17]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[18]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[19]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[20]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

2018 Impact Factor: 0.925

Article outline

Figures and Tables

[Back to Top]