American Institute of Mathematical Sciences

• Previous Article
The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations
• CPAA Home
• This Issue
• Next Article
Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity
November  2019, 18(6): 3285-3316. doi: 10.3934/cpaa.2019148

The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line

 Department of Mathematics, Izmir Institute of Technology, Urla, Izmir 35430, TURKEY

* Corresponding author

Received  August 2018 Revised  February 2019 Published  May 2019

Fund Project: Both authors are supported by TÜBİTAK 1001 Grant 117F449

We study the local and global wellposedness of the initial-boundary value problem for the biharmonic Schrödinger equation on the half-line with inhomogeneous Dirichlet-Neumann boundary data. First, we obtain a representation formula for the solution of the linear nonhomogenenous problem by using the Fokas method (also known as the unified transform method). We use this representation formula to prove space and time estimates on the solutions of the linear model in fractional Sobolev spaces by using Fourier analysis. Secondly, we consider the nonlinear model with a power type nonlinearity and prove the local wellposedness by means of a classical contraction argument. We obtain Strichartz estimates to treat the low regularity case by using the oscillatory integral theory directly on the representation formula provided by the Fokas method. Global wellposedness of the defocusing model is established up to cubic nonlinearities by using the multiplier technique and proving hidden trace regularities.

Citation: Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148
References:
 [1] B. Aksas and S.-E. Rebiai, Uniform stabilization of the fourth order Schrödinger equation, J. Math. Anal. Appl., 446 (2017), 1794-1813. doi: 10.1016/j.jmaa.2016.09.065. Google Scholar [2] K. Aoki, N. Hayashi and P. I. Naumkin, Global existence of small solutions for the fourth-order nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 65, 18. doi: 10.1007/s00030-016-0420-z. Google Scholar [3] C. Audiard, Global Strichartz estimates for the Schrödinger equation with nonzero boundary conditions and applications, Ann. Inst. Fourier.Google Scholar [4] G. Baruch and G. Fibich, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1843-1859. doi: 10.1088/0951-7715/24/6/009. Google Scholar [5] A. Batal and T. Özsarı, Nonlinear Schrödinger equations on the half-line with nonlinear boundary conditions, Electron. J. Differential Equations, Paper No. 222, 20. Google Scholar [6] M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92. doi: 10.1016/S0764-4442(00)00120-8. Google Scholar [7] J. L. Bona, S.-M. Sun and B.-Y. Zhang, Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 109 (2018), 1–66. doi: 10.1016/j.matpur.2017.11.001. Google Scholar [8] T. Boulenger and E. Lenzmann, Blowup for biharmonic NLS, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 503–544. doi: 10.24033/asens.2326. Google Scholar [9] Q. Bu, On well-posedness of the forced nonlinear Schrödinger equation, Appl. Anal., 46 (1992), 219-239. doi: 10.1080/00036819208840122. Google Scholar [10] R. Carroll and Q. Bu, Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques, Appl. Anal., 41 (1991), 33-51. doi: 10.1080/00036819108840015. Google Scholar [11] S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\Bbb R^n)$ and applications, Nonlinear Anal., 67 (2007), 687-707. doi: 10.1016/j.na.2006.06.020. Google Scholar [12] M. Dimakos and A. S. Fokas, The Poisson and the biharmonic equations in the interior of a convex polygon, Stud. Appl. Math., 134 (2015), 456-498. doi: 10.1111/sapm.12078. Google Scholar [13] V. D. Dinh, On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space, Dyn. Partial Differ. Equ., 14 (2017), 295-320. doi: 10.4310/DPDE.2017.v14.n3.a4. Google Scholar [14] V. D. Dinh, On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437. Google Scholar [15] V. D. Dinh, Well-posedness of nolinear fractional Schrödinger and wave equations in sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525. Google Scholar [16] G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241. Google Scholar [17] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411-1443. doi: 10.1098/rspa.1997.0077. Google Scholar [18] A. S. Fokas, A Unified Approach to Boundary Value Problems, vol. 78 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898717068. Google Scholar [19] A. S. Fokas, A. A. Himonas and D. Mantzavinos, The Korteweg–de Vries equation on the half-line, Nonlinearity, 29 (2016), 489-527. doi: 10.1088/0951-7715/29/2/489. Google Scholar [20] A. S. Fokas, A. A. Himonas and D. Mantzavinos, The nonlinear Schrödinger equation on the half-line, Trans. Amer. Math. Soc., 369 (2017), 681-709. doi: 10.1090/tran/6734. Google Scholar [21] C. Guo, Global existence of solutions for a fourth-order nonlinear Schrödinger equation in $n+1$ dimensions, Nonlinear Anal., 73 (2010), 555-563. doi: 10.1016/j.na.2010.03.052. Google Scholar [22] C. Guo, Global existence and asymptotic behavior of the Cauchy problem for fourth-order Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 392 (2012), 111-122. doi: 10.1016/j.jmaa.2012.03.028. Google Scholar [23] C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265. doi: 10.1016/j.jmaa.2005.06.091. Google Scholar [24] C. Hao, L. Hsiao and B. Wang, Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces, J. Math. Anal. Appl., 328 (2007), 58-83. doi: 10.1016/j.jmaa.2006.05.031. Google Scholar [25] N. Hayashi and P. I. Naumkin, Factorization technique for the fourth-order nonlinear Schrödinger equation, Z. Angew. Math. Phys., 66 (2015), 2343-2377. doi: 10.1007/s00033-015-0524-z. Google Scholar [26] N. Hayashi and P. I. Naumkin, Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, Nonlinear Anal., 116 (2015), 112-131. doi: 10.1016/j.na.2014.12.024. Google Scholar [27] N. Hayashi and P. I. Naumkin, Large time asymptotics for the fourth-order nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 880-905. doi: 10.1016/j.jde.2014.10.007. Google Scholar [28] N. Hayashi and P. I. Naumkin, On the inhomogeneous fourth-order nonlinear Schrödinger equation, J. Math. Phys., 56 (2015), 093502, 25. doi: 10.1063/1.4929657. Google Scholar [29] A. A. Himonas and D. Mantzavinos, The "good" Boussinesq equation on the half-line, J. Differential Equations, 258 (2015), 3107-3160. doi: 10.1016/j.jde.2015.01.005. Google Scholar [30] A. A. Himonas and D. Mantzavinos, Well-posedness of the nonlinear Schrödinger equation on the half-plane, arXiv: 1810.02395.Google Scholar [31] A. A. Himonas, D. Mantzavinos and F. Yan, Well-posedness of initial-boundary value problems for a reaction-diffusion equation, arXiv: 1810.05322.Google Scholar [32] J. Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations, 18 (2005), 647-668. Google Scholar [33] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339. doi: 10.1016/0375-9601(95)00752-0. Google Scholar [34] V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6. Google Scholar [35] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2nd edition doi: 10.1007/978-1-4939-2181-2. Google Scholar [36] C. Miao, H. Wu and J. Zhang, Scattering theory below energy for the cubic fourth-order Schrödinger equation, Math. Nachr., 288 (2015), 798-823. doi: 10.1002/mana.201400012. Google Scholar [37] C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749. doi: 10.1016/j.jde.2008.11.011. Google Scholar [38] B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1. Google Scholar [39] B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations, J. Differential Equations, 241 (2007), 237-278. doi: 10.1016/j.jde.2007.06.001. Google Scholar [40] B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009. Google Scholar [41] B. Pausader and S. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyperbolic Differ. Equ., 7 (2010), 651-705. doi: 10.1142/S0219891610002256. Google Scholar [42] B. Pausader and S. Xia, Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191. doi: 10.1088/0951-7715/26/8/2175. Google Scholar [43] M. Ruzhansky, B. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl. (9), 105 (2016), 31–65. doi: 10.1016/j.matpur.2015.09.005. Google Scholar [44] J.-i. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, Proc. Amer. Math. Soc., 132 (2004), 3559-3568. doi: 10.1090/S0002-9939-04-07620-8. Google Scholar [45] J.-i. Segata, Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearity, Math. Methods Appl. Sci., 29 (2006), 1785-1800. doi: 10.1002/mma.751. Google Scholar [46] J.-i. Segata and A. Shimomura, Asymptotics of solutions to the fourth order Schrödinger type equation with a dissipative nonlinearity, J. Math. Kyoto Univ., 46 (2006), 439-456. doi: 10.1215/kjm/1250281786. Google Scholar [47] Y. Wang, Nonlinear fourth-order Schrödinger equations with radial data, Nonlinear Anal., 75 (2012), 2534-2541. doi: 10.1016/j.na.2011.10.047. Google Scholar [48] R. Wen and S. Chai, Well-posedness and exact controllability of a fourth order Schrödinger equation with variable coefficients and Neumann boundary control and collocated observation, Electron. J. Differential Equations, Paper No. 216, 17. Google Scholar [49] R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation, SIAM J. Control Optim., 52 (2014), 365-396. doi: 10.1137/120902744. Google Scholar [50] R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation, Math. Control Signals Systems, 28 (2016), Art. 22, 28. doi: 10.1007/s00498-016-0175-4. Google Scholar [51] J. Zhang and J. Zheng, Energy critical fourth-order Schrödinger equations with subcritical perturbations, Nonlinear Anal., 73 (2010), 1004-1014. doi: 10.1016/j.na.2010.04.027. Google Scholar [52] J. Zheng, Well-posedness for the fourth-order Schrödinger equations with quadratic nonlinearity, Adv. Differential Equations, 16 (2011), 467-486. Google Scholar [53] S. Zhu, H. Yang and J. Zhang, Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation, Nonlinear Anal., 74 (2011), 6186-6201. doi: 10.1016/j.na.2011.05.096. Google Scholar [54] S. Zhu, J. Zhang and H. Yang, Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 7 (2010), 187-205. doi: 10.4310/DPDE.2010.v7.n2.a4. Google Scholar [55] S. Zhu, J. Zhang and H. Yang, Biharmonic nonlinear Schrödinger equation and the profile decomposition, Nonlinear Anal., 74 (2011), 6244-6255. doi: 10.1016/j.na.2011.06.004. Google Scholar

show all references

References:
 [1] B. Aksas and S.-E. Rebiai, Uniform stabilization of the fourth order Schrödinger equation, J. Math. Anal. Appl., 446 (2017), 1794-1813. doi: 10.1016/j.jmaa.2016.09.065. Google Scholar [2] K. Aoki, N. Hayashi and P. I. Naumkin, Global existence of small solutions for the fourth-order nonlinear Schrödinger equation, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 65, 18. doi: 10.1007/s00030-016-0420-z. Google Scholar [3] C. Audiard, Global Strichartz estimates for the Schrödinger equation with nonzero boundary conditions and applications, Ann. Inst. Fourier.Google Scholar [4] G. Baruch and G. Fibich, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, 24 (2011), 1843-1859. doi: 10.1088/0951-7715/24/6/009. Google Scholar [5] A. Batal and T. Özsarı, Nonlinear Schrödinger equations on the half-line with nonlinear boundary conditions, Electron. J. Differential Equations, Paper No. 222, 20. Google Scholar [6] M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92. doi: 10.1016/S0764-4442(00)00120-8. Google Scholar [7] J. L. Bona, S.-M. Sun and B.-Y. Zhang, Nonhomogeneous boundary-value problems for onedimensional nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 109 (2018), 1–66. doi: 10.1016/j.matpur.2017.11.001. Google Scholar [8] T. Boulenger and E. Lenzmann, Blowup for biharmonic NLS, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 503–544. doi: 10.24033/asens.2326. Google Scholar [9] Q. Bu, On well-posedness of the forced nonlinear Schrödinger equation, Appl. Anal., 46 (1992), 219-239. doi: 10.1080/00036819208840122. Google Scholar [10] R. Carroll and Q. Bu, Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques, Appl. Anal., 41 (1991), 33-51. doi: 10.1080/00036819108840015. Google Scholar [11] S. Cui and C. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s(\Bbb R^n)$ and applications, Nonlinear Anal., 67 (2007), 687-707. doi: 10.1016/j.na.2006.06.020. Google Scholar [12] M. Dimakos and A. S. Fokas, The Poisson and the biharmonic equations in the interior of a convex polygon, Stud. Appl. Math., 134 (2015), 456-498. doi: 10.1111/sapm.12078. Google Scholar [13] V. D. Dinh, On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space, Dyn. Partial Differ. Equ., 14 (2017), 295-320. doi: 10.4310/DPDE.2017.v14.n3.a4. Google Scholar [14] V. D. Dinh, On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 415-437. Google Scholar [15] V. D. Dinh, Well-posedness of nolinear fractional Schrödinger and wave equations in sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525. Google Scholar [16] G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462. doi: 10.1137/S0036139901387241. Google Scholar [17] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411-1443. doi: 10.1098/rspa.1997.0077. Google Scholar [18] A. S. Fokas, A Unified Approach to Boundary Value Problems, vol. 78 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898717068. Google Scholar [19] A. S. Fokas, A. A. Himonas and D. Mantzavinos, The Korteweg–de Vries equation on the half-line, Nonlinearity, 29 (2016), 489-527. doi: 10.1088/0951-7715/29/2/489. Google Scholar [20] A. S. Fokas, A. A. Himonas and D. Mantzavinos, The nonlinear Schrödinger equation on the half-line, Trans. Amer. Math. Soc., 369 (2017), 681-709. doi: 10.1090/tran/6734. Google Scholar [21] C. Guo, Global existence of solutions for a fourth-order nonlinear Schrödinger equation in $n+1$ dimensions, Nonlinear Anal., 73 (2010), 555-563. doi: 10.1016/j.na.2010.03.052. Google Scholar [22] C. Guo, Global existence and asymptotic behavior of the Cauchy problem for fourth-order Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 392 (2012), 111-122. doi: 10.1016/j.jmaa.2012.03.028. Google Scholar [23] C. Hao, L. Hsiao and B. Wang, Wellposedness for the fourth order nonlinear Schrödinger equations, J. Math. Anal. Appl., 320 (2006), 246-265. doi: 10.1016/j.jmaa.2005.06.091. Google Scholar [24] C. Hao, L. Hsiao and B. Wang, Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces, J. Math. Anal. Appl., 328 (2007), 58-83. doi: 10.1016/j.jmaa.2006.05.031. Google Scholar [25] N. Hayashi and P. I. Naumkin, Factorization technique for the fourth-order nonlinear Schrödinger equation, Z. Angew. Math. Phys., 66 (2015), 2343-2377. doi: 10.1007/s00033-015-0524-z. Google Scholar [26] N. Hayashi and P. I. Naumkin, Global existence and asymptotic behavior of solutions to the fourth-order nonlinear Schrödinger equation in the critical case, Nonlinear Anal., 116 (2015), 112-131. doi: 10.1016/j.na.2014.12.024. Google Scholar [27] N. Hayashi and P. I. Naumkin, Large time asymptotics for the fourth-order nonlinear Schrödinger equation, J. Differential Equations, 258 (2015), 880-905. doi: 10.1016/j.jde.2014.10.007. Google Scholar [28] N. Hayashi and P. I. Naumkin, On the inhomogeneous fourth-order nonlinear Schrödinger equation, J. Math. Phys., 56 (2015), 093502, 25. doi: 10.1063/1.4929657. Google Scholar [29] A. A. Himonas and D. Mantzavinos, The "good" Boussinesq equation on the half-line, J. Differential Equations, 258 (2015), 3107-3160. doi: 10.1016/j.jde.2015.01.005. Google Scholar [30] A. A. Himonas and D. Mantzavinos, Well-posedness of the nonlinear Schrödinger equation on the half-plane, arXiv: 1810.02395.Google Scholar [31] A. A. Himonas, D. Mantzavinos and F. Yan, Well-posedness of initial-boundary value problems for a reaction-diffusion equation, arXiv: 1810.05322.Google Scholar [32] J. Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations, 18 (2005), 647-668. Google Scholar [33] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations, Phys. Rev. E, 53 (1996), R1336–R1339. doi: 10.1016/0375-9601(95)00752-0. Google Scholar [34] V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, 144 (2000), 194-210. doi: 10.1016/S0167-2789(00)00078-6. Google Scholar [35] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, 2nd edition doi: 10.1007/978-1-4939-2181-2. Google Scholar [36] C. Miao, H. Wu and J. Zhang, Scattering theory below energy for the cubic fourth-order Schrödinger equation, Math. Nachr., 288 (2015), 798-823. doi: 10.1002/mana.201400012. Google Scholar [37] C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749. doi: 10.1016/j.jde.2008.11.011. Google Scholar [38] B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225. doi: 10.4310/DPDE.2007.v4.n3.a1. Google Scholar [39] B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations, J. Differential Equations, 241 (2007), 237-278. doi: 10.1016/j.jde.2007.06.001. Google Scholar [40] B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517. doi: 10.1016/j.jfa.2008.11.009. Google Scholar [41] B. Pausader and S. Shao, The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyperbolic Differ. Equ., 7 (2010), 651-705. doi: 10.1142/S0219891610002256. Google Scholar [42] B. Pausader and S. Xia, Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, 26 (2013), 2175-2191. doi: 10.1088/0951-7715/26/8/2175. Google Scholar [43] M. Ruzhansky, B. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl. (9), 105 (2016), 31–65. doi: 10.1016/j.matpur.2015.09.005. Google Scholar [44] J.-i. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, Proc. Amer. Math. Soc., 132 (2004), 3559-3568. doi: 10.1090/S0002-9939-04-07620-8. Google Scholar [45] J.-i. Segata, Modified wave operators for the fourth-order non-linear Schrödinger-type equation with cubic non-linearity, Math. Methods Appl. Sci., 29 (2006), 1785-1800. doi: 10.1002/mma.751. Google Scholar [46] J.-i. Segata and A. Shimomura, Asymptotics of solutions to the fourth order Schrödinger type equation with a dissipative nonlinearity, J. Math. Kyoto Univ., 46 (2006), 439-456. doi: 10.1215/kjm/1250281786. Google Scholar [47] Y. Wang, Nonlinear fourth-order Schrödinger equations with radial data, Nonlinear Anal., 75 (2012), 2534-2541. doi: 10.1016/j.na.2011.10.047. Google Scholar [48] R. Wen and S. Chai, Well-posedness and exact controllability of a fourth order Schrödinger equation with variable coefficients and Neumann boundary control and collocated observation, Electron. J. Differential Equations, Paper No. 216, 17. Google Scholar [49] R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth order Schrödinger equation with boundary control and collocated observation, SIAM J. Control Optim., 52 (2014), 365-396. doi: 10.1137/120902744. Google Scholar [50] R. Wen, S. Chai and B.-Z. Guo, Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation, Math. Control Signals Systems, 28 (2016), Art. 22, 28. doi: 10.1007/s00498-016-0175-4. Google Scholar [51] J. Zhang and J. Zheng, Energy critical fourth-order Schrödinger equations with subcritical perturbations, Nonlinear Anal., 73 (2010), 1004-1014. doi: 10.1016/j.na.2010.04.027. Google Scholar [52] J. Zheng, Well-posedness for the fourth-order Schrödinger equations with quadratic nonlinearity, Adv. Differential Equations, 16 (2011), 467-486. Google Scholar [53] S. Zhu, H. Yang and J. Zhang, Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation, Nonlinear Anal., 74 (2011), 6186-6201. doi: 10.1016/j.na.2011.05.096. Google Scholar [54] S. Zhu, J. Zhang and H. Yang, Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 7 (2010), 187-205. doi: 10.4310/DPDE.2010.v7.n2.a4. Google Scholar [55] S. Zhu, J. Zhang and H. Yang, Biharmonic nonlinear Schrödinger equation and the profile decomposition, Nonlinear Anal., 74 (2011), 6244-6255. doi: 10.1016/j.na.2011.06.004. Google Scholar
The region $D = D^+\cup D^-$
Partitioning the boundary
 [1] Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905 [2] Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275 [3] Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $\mathbb{T}^3$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116 [4] Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 [5] Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 [6] Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 [7] Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127 [8] Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034 [9] Peng Gao. Carleman estimates for forward and backward stochastic fourth order Schrödinger equations and their applications. Evolution Equations & Control Theory, 2018, 7 (3) : 465-499. doi: 10.3934/eect.2018023 [10] Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055 [11] Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143 [12] Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177 [13] Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic & Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 [14] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [15] Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174 [16] Mouhamed Moustapha Fall. Regularity estimates for nonlocal Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1405-1456. doi: 10.3934/dcds.2019061 [17] Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323 [18] Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177 [19] Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 [20] M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

2018 Impact Factor: 0.925