# American Institute of Mathematical Sciences

• Previous Article
Applications of generalized trigonometric functions with two parameters
• CPAA Home
• This Issue
• Next Article
Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field
May  2019, 18(3): 1483-1508. doi: 10.3934/cpaa.2019071

## Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models

 1 Department of Mathematics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan 2 General Education Center, National Taipei University of Technology, Taipei 10608, Taiwan

* Corresponding author

Received  October 2017 Revised  June 2018 Published  November 2018

Fund Project: The first author is partially supported by the NCTS and MOST of Taiwan, and the second author is partially supported by the MOST of Taiwan

This paper is concerned with the existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. By using Schauder's fixed point theorem and the existence of contracting rectangles, we obtain the existence result. Then we investigate the asymptotic behavior of positive monotone traveling wave solutions by using the modified Ikehara's Theorem. With the help of their asymptotic behavior, we provide a sufficient condition which guarantee that all positive traveling wave solutions of the system are non-monotone. Furthermore, to illustrate our main results, the existence and non-monotonicity of traveling wave solutions of Lotka-Volterra predator-prey model and modified Leslie-Gower predator-prey models with different kinds of functional responses are also discussed.

Citation: Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071
##### References:
 [1] S. Ai, Y. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814. doi: 10.1016/j.jde.2017.08.021. Google Scholar [2] M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16 (2003), 1069-1075. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar [3] J. R. Beddington, Mutual interference between parasites or predators and it's effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340. Google Scholar [4] A. Boumenir and V. Nguyen, Erron Theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Differential Equations, 244 (2008), 1551-1570. doi: 10.1016/j.jde.2008.01.004. Google Scholar [5] J. B. Conway, Functions of One Complex Variable, $2^{nd}$ edition, Springer-Verlag, New York, 1978. Google Scholar [6] W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308. doi: 10.1007/s10884-015-9472-8. Google Scholar [7] Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364. doi: 10.1016/j.jde.2004.05.010. Google Scholar [8] Y. H. Du and M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778. doi: 10.1017/S0308210500004704. Google Scholar [9] S. R. Dubar, Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17 (1983), 11-32. doi: 10.1007/BF00276112. Google Scholar [10] S. R. Dubar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $R^4$, Transactions of American Mathematical Society, 286 (1984), 557-594. doi: 10.2307/1999810. Google Scholar [11] S. R. Dubar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics, 46 (1986), 1057-1078. doi: 10.1137/0146063. Google Scholar [12] W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308. doi: 10.1007/s10884-015-9472-8. Google Scholar [13] W. Ellison and F. Ellison, Prime Numbers, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985. Google Scholar [14] R. Gardner, Existence of traveling wave solutions of predator-prey system via the connection index, SIAM Journal on Applied Mathematics, 44 (1984), 56-79. doi: 10.1137/0144006. Google Scholar [15] C.-H. Hsu, C.-R. Yang, T.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prayer type model, J. of Differential Equations, 252 (2012), 3040-3075. doi: 10.1016/j.jde.2011.11.008. Google Scholar [16] Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, Journal of Mathematical Analysis and Applications, 41 (2014), 163-184. doi: 10.1016/j.jmaa.2014.03.085. Google Scholar [17] J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete and Continuous Dynamical System, 9 (2003), 925-936. doi: 10.3934/dcds.2003.9.925. Google Scholar [18] J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in diffusive predator-prey model, Journal of Mathematical Biology, 46 (2003), 132-152. doi: 10.1007/s00285-002-0171-9. Google Scholar [19] W. Huang, Traveling wave solutions for a class of predator-prey system, Journal of Dynamics and Differential Equations, 24 (2012), 633-644. doi: 10.1007/s10884-012-9255-4. Google Scholar [20] W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224. doi: 10.1016/j.jde.2015.09.060. Google Scholar [21] W. Khellaf and N. Hamri, Boundedness and global stability for a predator-prey system with the Beddington-DeAngelis functional response, Differ. Equ. Nonlinear Mech., 2010 (2010), Article ID 813289. doi: 10.1155/2010/813289. Google Scholar [22] W. T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003. Google Scholar [23] W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos Soliton Fractals, 37 (2008), 476-486. doi: 10.1016/j.chaos.2006.09.039. Google Scholar [24] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 4-58. doi: 10.1016/j.na.2013.10.024. Google Scholar [25] G. Lin, W. T. Li and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete and Continuous Dynamical System-Series B, 13 (2010), 393-414. doi: 10.3934/dcdsb.2010.13.393. Google Scholar [26] X. Lin, C. Wu and P. Weng, Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23 (2011), 903-921. doi: 10.1007/s10884-011-9220-7. Google Scholar [27] D. Liang, P. Weng and J. Wu, Travelling wave solutions in a delayed predator-prey diffusion PDE system point-to-periodic and point-to-point waves, IMA Journal of Applied Mathematics, 77 (2012), 516-545. doi: 10.1093/imamat/hxr031. Google Scholar [28] G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, Journal of Dynamics and Differential Equations, 23 (2014), 583-605. doi: 10.1007/s10884-014-9355-4. Google Scholar [29] J. J. Lin, W. Wang, C. Zhao and T. H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete and Continuous Dynamical System-Series B, 20 (2015), 1135-1154. doi: 10.3934/dcdsb.2015.20.1135. Google Scholar [30] S. Ma, Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846. Google Scholar [31] S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017). doi: 10.1007/s00009-017-0905-y. Google Scholar [32] S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 4-51. doi: 10.1016/j.aml.2017.05.014. Google Scholar [33] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995. Google Scholar [34] E. Trafimchuk, M. Pinto and S. Trafimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction, J. of Differential Equations, 254 (2013), 3690-3714. doi: 10.1016/j.jde.2013.02.005. Google Scholar [35] X. S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete and Continuous Dynamical System-Series A, 32 (2012), 3303-3324. doi: 10.3934/dcds.2012.32.3303. Google Scholar [36] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941. Google Scholar [37] Q. Ye, Z, Li, M. X. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, $2^{nd}$ edition, Science Press, Beijing, 2011. Google Scholar [38] J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393. doi: 10.1016/j.jmaa.2012.01.013. Google Scholar

show all references

##### References:
 [1] S. Ai, Y. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814. doi: 10.1016/j.jde.2017.08.021. Google Scholar [2] M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16 (2003), 1069-1075. doi: 10.1016/S0893-9659(03)90096-6. Google Scholar [3] J. R. Beddington, Mutual interference between parasites or predators and it's effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340. Google Scholar [4] A. Boumenir and V. Nguyen, Erron Theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Differential Equations, 244 (2008), 1551-1570. doi: 10.1016/j.jde.2008.01.004. Google Scholar [5] J. B. Conway, Functions of One Complex Variable, $2^{nd}$ edition, Springer-Verlag, New York, 1978. Google Scholar [6] W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308. doi: 10.1007/s10884-015-9472-8. Google Scholar [7] Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364. doi: 10.1016/j.jde.2004.05.010. Google Scholar [8] Y. H. Du and M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778. doi: 10.1017/S0308210500004704. Google Scholar [9] S. R. Dubar, Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17 (1983), 11-32. doi: 10.1007/BF00276112. Google Scholar [10] S. R. Dubar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $R^4$, Transactions of American Mathematical Society, 286 (1984), 557-594. doi: 10.2307/1999810. Google Scholar [11] S. R. Dubar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics, 46 (1986), 1057-1078. doi: 10.1137/0146063. Google Scholar [12] W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308. doi: 10.1007/s10884-015-9472-8. Google Scholar [13] W. Ellison and F. Ellison, Prime Numbers, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985. Google Scholar [14] R. Gardner, Existence of traveling wave solutions of predator-prey system via the connection index, SIAM Journal on Applied Mathematics, 44 (1984), 56-79. doi: 10.1137/0144006. Google Scholar [15] C.-H. Hsu, C.-R. Yang, T.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prayer type model, J. of Differential Equations, 252 (2012), 3040-3075. doi: 10.1016/j.jde.2011.11.008. Google Scholar [16] Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, Journal of Mathematical Analysis and Applications, 41 (2014), 163-184. doi: 10.1016/j.jmaa.2014.03.085. Google Scholar [17] J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete and Continuous Dynamical System, 9 (2003), 925-936. doi: 10.3934/dcds.2003.9.925. Google Scholar [18] J. Huang, G. Lu and S. Ruan, Existence of traveling wave solutions in diffusive predator-prey model, Journal of Mathematical Biology, 46 (2003), 132-152. doi: 10.1007/s00285-002-0171-9. Google Scholar [19] W. Huang, Traveling wave solutions for a class of predator-prey system, Journal of Dynamics and Differential Equations, 24 (2012), 633-644. doi: 10.1007/s10884-012-9255-4. Google Scholar [20] W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224. doi: 10.1016/j.jde.2015.09.060. Google Scholar [21] W. Khellaf and N. Hamri, Boundedness and global stability for a predator-prey system with the Beddington-DeAngelis functional response, Differ. Equ. Nonlinear Mech., 2010 (2010), Article ID 813289. doi: 10.1155/2010/813289. Google Scholar [22] W. T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003. Google Scholar [23] W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos Soliton Fractals, 37 (2008), 476-486. doi: 10.1016/j.chaos.2006.09.039. Google Scholar [24] G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 4-58. doi: 10.1016/j.na.2013.10.024. Google Scholar [25] G. Lin, W. T. Li and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete and Continuous Dynamical System-Series B, 13 (2010), 393-414. doi: 10.3934/dcdsb.2010.13.393. Google Scholar [26] X. Lin, C. Wu and P. Weng, Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23 (2011), 903-921. doi: 10.1007/s10884-011-9220-7. Google Scholar [27] D. Liang, P. Weng and J. Wu, Travelling wave solutions in a delayed predator-prey diffusion PDE system point-to-periodic and point-to-point waves, IMA Journal of Applied Mathematics, 77 (2012), 516-545. doi: 10.1093/imamat/hxr031. Google Scholar [28] G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, Journal of Dynamics and Differential Equations, 23 (2014), 583-605. doi: 10.1007/s10884-014-9355-4. Google Scholar [29] J. J. Lin, W. Wang, C. Zhao and T. H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete and Continuous Dynamical System-Series B, 20 (2015), 1135-1154. doi: 10.3934/dcdsb.2015.20.1135. Google Scholar [30] S. Ma, Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846. Google Scholar [31] S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017). doi: 10.1007/s00009-017-0905-y. Google Scholar [32] S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 4-51. doi: 10.1016/j.aml.2017.05.014. Google Scholar [33] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995. Google Scholar [34] E. Trafimchuk, M. Pinto and S. Trafimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction, J. of Differential Equations, 254 (2013), 3690-3714. doi: 10.1016/j.jde.2013.02.005. Google Scholar [35] X. S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete and Continuous Dynamical System-Series A, 32 (2012), 3303-3324. doi: 10.3934/dcds.2012.32.3303. Google Scholar [36] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941. Google Scholar [37] Q. Ye, Z, Li, M. X. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, $2^{nd}$ edition, Science Press, Beijing, 2011. Google Scholar [38] J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393. doi: 10.1016/j.jmaa.2012.01.013. Google Scholar
graphs of functions $g_1(\cdot)$ and $g_2(\cdot).$
Graphs of $\overline{\phi}_n(\xi)$ and $\underline{\phi}_n(\xi)$ with $n = 1, 2$.
The regions of $\Omega_1, \Omega_2$, line segments $L_1, L_2$ and tangent line $L_{2T}$.
The regions of $\Omega_3, \Omega_4$, line segments $L_3, L_4$ and tangent line $L_{4T}$.
The strictly contracting rectangle $[{\bf{a}}(s), {\bf{b}}(s)]$ with $s \in [0, 1]$.
 [1] Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649 [2] José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193 [3] Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567 [4] Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35 [5] Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations & Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008 [6] Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011 [7] John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367 [8] Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 [9] Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313 [10] Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109 [11] José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 [12] Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211 [13] Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667 [14] V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413 [15] Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 [16] Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43 [17] Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945 [18] Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611 [19] Koray Karabina, Edward Knapp, Alfred Menezes. Generalizations of Verheul's theorem to asymmetric pairings. Advances in Mathematics of Communications, 2013, 7 (1) : 103-111. doi: 10.3934/amc.2013.7.103 [20] Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020

2018 Impact Factor: 0.925

## Metrics

• HTML views (228)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar