May  2019, 18(3): 1049-1072. doi: 10.3934/cpaa.2019051

Entire solutions in nonlocal monostable equations: Asymmetric case

1. 

State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an, Shaanxi 710071, China

2. 

School of Science, Chang'an University, Xi'an, Shaanxi 710064, China

3. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author

Received  November 2017 Revised  August 2018 Published  November 2018

This paper is concerned with entire solutions of the monostable equation with nonlocal dispersal, i.e., $u_{t}=J*u-u+f(u)$. Here the kernel $J$ is asymmetric. Unlike symmetric cases, this equation lacks symmetry between the nonincreasing and nondecreasing traveling wave solutions. We first give a relationship between the critical speeds $c^{*}$ and $\hat{c}^{*}$, where $c^*$ and $\hat{c}^{*}$ are the minimal speeds of the nonincreasing and nondecreasing traveling wave solutions, respectively. Then we establish the existence and qualitative properties of entire solutions by combining two traveling wave solutions coming from both ends of real axis and some spatially independent solutions. Furthermore, when the kernel $J$ is symmetric, we prove that the entire solutions are 5-dimensional, 4-dimensional, and 3-dimensional manifolds, respectively.

Citation: Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051
References:
[1]

F. Andreuvaillo, J. M. Maz$\acute{o}$n, J. D. Rossi and J. Toledomelero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165. Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, in H. Brunner, X.Q. Zhao and X. Zou (Eds.), Nonlinear dynamics and evolution equations, in: Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13–52. doi: 10.1090/fic/048/02. Google Scholar

[3]

P. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136. doi: 10.1007/s002050050037. Google Scholar

[4]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5. Google Scholar

[5]

E. ChasseigneM. Chavesb and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math Pures Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[6]

X. F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal. TMA, 50 (2002), 807-838. doi: 10.1016/S0362-546X(01)00787-8. Google Scholar

[7]

F. X. Chen, Existence, uniqueness and asymptotical stability of travelling fronts in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160. Google Scholar

[8]

F. X. ChenJ. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 1207-1237. doi: 10.1017/S0308210500004959. Google Scholar

[9]

C. CortazarM. ElguetaJ. D Rossi and N. Wolanski, Boundary fluxes for non-local diffusion, J. Differential Equations, 234 (2007), 360-390. doi: 10.1016/j.jde.2006.12.002. Google Scholar

[10]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156. doi: 10.1007/s00205-007-0062-8. Google Scholar

[11]

J. Coville, Traveling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case. Prépublication du CMM, Hal-00696208.Google Scholar

[12]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002. Google Scholar

[13]

J. Coville and L. Dupaigne, On a nonlocal reaction-diffusion eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. Google Scholar

[14]

J. Coville, Travelling waves in a nonlocal reaction diffusion equation with ignition nonlinearity, Ph.D. Thesis, Paris: Universit'e Pierre et Marie Curie, 2003.Google Scholar

[15]

J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differential Equations, 68 (2007), 1-23. Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318. doi: 10.3934/dcds.2017272. Google Scholar

[17]

P. Fife, Some nonclassical trends in parabolic and parabolic–like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153–191. doi: 10.1007/978-3-662-05281-5_3. Google Scholar

[18]

F. Hamel and N. Nadirashvili, Entire solution of the KPP eqution, Comm. Pure Appl. Math., 52 (1999), 1255-1276. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. Google Scholar

[19]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $R^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[20]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Eur. J. Appl. Math., 17 (2006), 211-232. doi: 10.1017/S0956792506006462. Google Scholar

[21]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1. Google Scholar

[22]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Functional Analysis, 251 (2007), 399-437. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[23]

T. Kawata, Fourier Analysi, Sangyo Tosho Publishing Co. LTD, Tokyo, 1975.Google Scholar

[24]

T. S. Lim and A. Alatos, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631. doi: 10.1090/tran/6602. Google Scholar

[25]

W. T. LiN. W. Liu and Z. C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504. doi: 10.1016/j.matpur.2008.07.002. Google Scholar

[26]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real Word Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005. Google Scholar

[27]

W.-T. LiZ.-C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129. doi: 10.1016/j.jde.2008.03.023. Google Scholar

[28]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531. Google Scholar

[29]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861. doi: 10.1007/s10884-006-9046-x. Google Scholar

[30]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[31]

S. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y. Google Scholar

[32]

K. Schumacher, Traveling-front solutions for integro-differential equations, I, J. Reine. Angew. Math., 316 (1980), 54-70. Google Scholar

[33]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020. Google Scholar

[34]

Y. J. SunW. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonnlinearity, Nonlinear Anal. TMA., 74 (2011), 814-826. doi: 10.1016/j.na.2010.09.032. Google Scholar

[35]

A. Vretblad, Fourier Analysis and Its Applications, Springer-Verlag, New York, 2003. Google Scholar

[36]

M. Wang and G. Lv, Entire solutions of a diffusion and competitive Lotka-Volterra type system with nonlocal delayed, Nonlinearity, 23 (2010), 1609-1630. doi: 10.1088/0951-7715/23/7/005. Google Scholar

[37]

Z.-C. WangW.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1. Google Scholar

[38]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420. doi: 10.1137/080727312. Google Scholar

[39]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[40]

S. L. WuZ. X. Shi and F. Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535. doi: 10.1016/j.jde.2013.07.049. Google Scholar

[41]

H. Yagisita, Back and global solutions characterizing annihilation dynamics of traveling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164. doi: 10.2977/prims/1145476150. Google Scholar

[42]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648. Google Scholar

[43]

H. Yagisita, Existence of traveling waves for a nonlocal bistable equation: an abstract approach, Publ. Res. Inst. Math. Sci., 45 (2009), 955-979. doi: 10.2977/prims/1260476649. Google Scholar

[44]

L. Zhang, W. T. Li and Z. C. Wang, Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel, Sci. China Math., 60 (2017), 1791-1804. doi: 10.1007/s11425-016-9003-7. Google Scholar

[45]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224. doi: 10.1007/s10884-014-9416-8. Google Scholar

show all references

References:
[1]

F. Andreuvaillo, J. M. Maz$\acute{o}$n, J. D. Rossi and J. Toledomelero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. doi: 10.1090/surv/165. Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, in H. Brunner, X.Q. Zhao and X. Zou (Eds.), Nonlinear dynamics and evolution equations, in: Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13–52. doi: 10.1090/fic/048/02. Google Scholar

[3]

P. BatesP. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136. doi: 10.1007/s002050050037. Google Scholar

[4]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5. Google Scholar

[5]

E. ChasseigneM. Chavesb and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math Pures Appl., 86 (2006), 271-291. doi: 10.1016/j.matpur.2006.04.005. Google Scholar

[6]

X. F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal. TMA, 50 (2002), 807-838. doi: 10.1016/S0362-546X(01)00787-8. Google Scholar

[7]

F. X. Chen, Existence, uniqueness and asymptotical stability of travelling fronts in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160. Google Scholar

[8]

F. X. ChenJ. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 1207-1237. doi: 10.1017/S0308210500004959. Google Scholar

[9]

C. CortazarM. ElguetaJ. D Rossi and N. Wolanski, Boundary fluxes for non-local diffusion, J. Differential Equations, 234 (2007), 360-390. doi: 10.1016/j.jde.2006.12.002. Google Scholar

[10]

C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156. doi: 10.1007/s00205-007-0062-8. Google Scholar

[11]

J. Coville, Traveling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case. Prépublication du CMM, Hal-00696208.Google Scholar

[12]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002. Google Scholar

[13]

J. Coville and L. Dupaigne, On a nonlocal reaction-diffusion eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. Google Scholar

[14]

J. Coville, Travelling waves in a nonlocal reaction diffusion equation with ignition nonlinearity, Ph.D. Thesis, Paris: Universit'e Pierre et Marie Curie, 2003.Google Scholar

[15]

J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differential Equations, 68 (2007), 1-23. Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318. doi: 10.3934/dcds.2017272. Google Scholar

[17]

P. Fife, Some nonclassical trends in parabolic and parabolic–like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153–191. doi: 10.1007/978-3-662-05281-5_3. Google Scholar

[18]

F. Hamel and N. Nadirashvili, Entire solution of the KPP eqution, Comm. Pure Appl. Math., 52 (1999), 1255-1276. doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. Google Scholar

[19]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $R^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238. Google Scholar

[20]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Eur. J. Appl. Math., 17 (2006), 211-232. doi: 10.1017/S0956792506006462. Google Scholar

[21]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1. Google Scholar

[22]

L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, J. Functional Analysis, 251 (2007), 399-437. doi: 10.1016/j.jfa.2007.07.013. Google Scholar

[23]

T. Kawata, Fourier Analysi, Sangyo Tosho Publishing Co. LTD, Tokyo, 1975.Google Scholar

[24]

T. S. Lim and A. Alatos, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368 (2016), 8615-8631. doi: 10.1090/tran/6602. Google Scholar

[25]

W. T. LiN. W. Liu and Z. C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90 (2008), 492-504. doi: 10.1016/j.matpur.2008.07.002. Google Scholar

[26]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real Word Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005. Google Scholar

[27]

W.-T. LiZ.-C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129. doi: 10.1016/j.jde.2008.03.023. Google Scholar

[28]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560. doi: 10.3934/dcds.2015.35.1531. Google Scholar

[29]

Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861. doi: 10.1007/s10884-006-9046-x. Google Scholar

[30]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240. doi: 10.1137/080723715. Google Scholar

[31]

S. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y. Google Scholar

[32]

K. Schumacher, Traveling-front solutions for integro-differential equations, I, J. Reine. Angew. Math., 316 (1980), 54-70. Google Scholar

[33]

Y.-J. SunW.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020. Google Scholar

[34]

Y. J. SunW. T. Li and Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonnlinearity, Nonlinear Anal. TMA., 74 (2011), 814-826. doi: 10.1016/j.na.2010.09.032. Google Scholar

[35]

A. Vretblad, Fourier Analysis and Its Applications, Springer-Verlag, New York, 2003. Google Scholar

[36]

M. Wang and G. Lv, Entire solutions of a diffusion and competitive Lotka-Volterra type system with nonlocal delayed, Nonlinearity, 23 (2010), 1609-1630. doi: 10.1088/0951-7715/23/7/005. Google Scholar

[37]

Z.-C. WangW.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1. Google Scholar

[38]

Z.-C. WangW.-T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420. doi: 10.1137/080727312. Google Scholar

[39]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[40]

S. L. WuZ. X. Shi and F. Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535. doi: 10.1016/j.jde.2013.07.049. Google Scholar

[41]

H. Yagisita, Back and global solutions characterizing annihilation dynamics of traveling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164. doi: 10.2977/prims/1145476150. Google Scholar

[42]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648. Google Scholar

[43]

H. Yagisita, Existence of traveling waves for a nonlocal bistable equation: an abstract approach, Publ. Res. Inst. Math. Sci., 45 (2009), 955-979. doi: 10.2977/prims/1260476649. Google Scholar

[44]

L. Zhang, W. T. Li and Z. C. Wang, Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel, Sci. China Math., 60 (2017), 1791-1804. doi: 10.1007/s11425-016-9003-7. Google Scholar

[45]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224. doi: 10.1007/s10884-014-9416-8. Google Scholar

Table 1.  Region of $(c, \hat{c})$
$\hat{c}^{*}>0$$\hat{c}^{*}=0$$\hat{c}^{*} <0$
${c^{\ast}>0}$$C_{11}$ $C_{12}$$ C_{13}=C^{1}_{13}\cup C^{2}_{13} $
${c^{\ast}=0}$$C_{21}$$C_{22}$$C_{23}=C^{1}_{23}\cup C^{2}_{23} $
${c^{\ast} <0}$$C_{31}=C^{1}_{31}\cup C^{2}_{31} $$C_{32}=C^{1}_{32}\cup C^{2}_{32}$ $\setminus$
$\hat{c}^{*}>0$$\hat{c}^{*}=0$$\hat{c}^{*} <0$
${c^{\ast}>0}$$C_{11}$ $C_{12}$$ C_{13}=C^{1}_{13}\cup C^{2}_{13} $
${c^{\ast}=0}$$C_{21}$$C_{22}$$C_{23}=C^{1}_{23}\cup C^{2}_{23} $
${c^{\ast} <0}$$C_{31}=C^{1}_{31}\cup C^{2}_{31} $$C_{32}=C^{1}_{32}\cup C^{2}_{32}$ $\setminus$
[1]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[2]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[3]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[4]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[5]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[6]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[7]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[8]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[9]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[10]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[11]

Carmen Cortázar, Manuel Elgueta, Jorge García-Melián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1409-1419. doi: 10.3934/dcds.2015.35.1409

[12]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[13]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[14]

Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173

[15]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[16]

Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562

[17]

Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160

[18]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[19]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[20]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (103)
  • HTML views (202)
  • Cited by (0)

Other articles
by authors

[Back to Top]