March  2019, 18(2): 643-661. doi: 10.3934/cpaa.2019032

Continuous data assimilation for the 3D primitive equations of the ocean

Department of Mathematics, Western Washington University, 516 High St, Bellingham, WA 98225-9063, USA

Received  December 2017 Revised  May 2018 Published  October 2018

In this article, we show that the continuous data assimilation algorithm is valid for the 3D primitive equations of the ocean. Namely, the assimilated solution converges to the reference solution in $L^2$ norm at an exponential rate in time. We also prove the global existence of strong solution to the assimilated system.

Citation: Yuan Pei. Continuous data assimilation for the 3D primitive equations of the ocean. Communications on Pure & Applied Analysis, 2019, 18 (2) : 643-661. doi: 10.3934/cpaa.2019032
References:
[1]

D. A. AlbanezH. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier-Stokes-α model, Asymptotic Anal., 97 (2016), 139-164. doi: 10.3233/ASY-151351. Google Scholar

[2]

M. U. AltafE. S. TitiT. GebraelO. M. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Bénard convection equations using continuous data assimilation, Computational Geosciences, (2017), 1-18. doi: 10.1007/s10596-017-9619-2. Google Scholar

[3]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304. doi: 10.1007/s00332-013-9189-y. Google Scholar

[4]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters-a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594. doi: 10.3934/eect.2014.3.579. Google Scholar

[5]

H. BessaihE. Olson and E. S. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753. doi: 10.1088/0951-7715/28/3/729. Google Scholar

[6]

A. Biswas, J. Hudson, A. Larios and Y. Pei, Continuous data assimilation for the magneto-hydrodynamic equations in 2D using one component of the velocity and magnetic fields, Asymptot. Anal., (2018), to appear.Google Scholar

[7]

A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier-Stokes equations, Nonlinearity, 35 (2017), 132-157. doi: 10.1016/j.nonrwa.2016.10.005. Google Scholar

[8]

D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, Asymptotic derivation of a Navier condition for the primitive equations, Asymptot. Anal., 33 (2003), 237-259 Google Scholar

[9]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94. Google Scholar

[10]

D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, Uniqueness of solution for the 2D primitive equations with friction condition on the bottom, in Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics (Spanish) (Jaca, 2001) (eds. E.H. Zarantonello and Author 2), Univ. Zaragoza, 27 (2003), 135-143. Google Scholar

[11]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482. doi: 10.1007/s00220-015-2365-1. Google Scholar

[12]

C. CaoI. G. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 37-96. doi: 10.1512/iumj.2001.50.2154. Google Scholar

[13]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76. doi: 10.1007/s00205-014-0752-y. Google Scholar

[14]

C. CaoJ. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differential Equations, 257 (2014), 4108-4132. doi: 10.1016/j.jde.2014.08.003. Google Scholar

[15]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531. doi: 10.1002/cpa.21576. Google Scholar

[16]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: near $H^1$initial data, J. Funct. Anal., 272 (2017), 4606-4641. doi: 10.1016/j.jfa.2017.01.018. Google Scholar

[17]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166 (2007), 245-267. doi: 10.4007/annals.2007.166.245. Google Scholar

[18]

C. Cao and E. S. Titi, Global well-posedness of the $3D$ primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys., 310 (2012), 537-563. doi: 10.1007/s00220-011-1409-4. Google Scholar

[19]

I. Chueshov, A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711-729. doi: 10.1017/S0308210512001953. Google Scholar

[20]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988.Google Scholar

[21]

R. Daley, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series, 1993.Google Scholar

[22]

R. Errico and D. Baumhefner, Predictability experiments using a high-resolution limited-area model, Monthly Weather Review, 115 (1986), 488-505. Google Scholar

[23]

A. FarhatM. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, 303 (2015), 59-66. doi: 10.1016/j.physd.2015.03.011. Google Scholar

[24]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier-Stokes Equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23. doi: 10.1007/s00021-015-0225-6. Google Scholar

[25]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. of Math. Anal. and Appl., 438 (2016), 492-506. doi: 10.1016/j.jmaa.2016.01.072. Google Scholar

[26]

A. FarhatE. Lunasin and E. S. Titi, Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. of Nonlinear Science, (2017), 1-23. doi: 10.1007/s00332-017-9360-y. Google Scholar

[27]

A. Farhat, E. Lunasin and E. S. Titi, On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model, preprint arXiv: 1608.04770.Google Scholar

[28]

C. FoiasC. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier-Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142. doi: 10.1137/16M1076526. Google Scholar

[29]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier-Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110. Google Scholar

[30]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822. doi: 10.3934/dcdsb.2008.10.801. Google Scholar

[31]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408. Google Scholar

[32]

B. Guo and D. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 846-866. doi: 10.1016/S0252-9602(09)60074-6. Google Scholar

[33]

K. HaydenE. Olson and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier-Stokes equations, Phys. D, 240 (2011), 1416-1425. doi: 10.1016/j.physd.2011.04.021. Google Scholar

[34]

J. Hoke and R. Anthes, The initialization of numerical models by a dynamic relaxation technique, Monthly Weather Review, 104 (1976), 1551-1556. Google Scholar

[35]

C. Hu, Asymptotic analysis of the primitive equations under the small depth assumption, Nonlinear Anal., 61 (2005), 425-460. doi: 10.1016/j.na.2004.12.005. Google Scholar

[36]

C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, in Frontiers in mathematical analysis and numerical methods, World Sci. Publ., (2004), 149-170. Google Scholar

[37]

M. JollyV. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192. doi: 10.1515/ans-2016-6019. Google Scholar

[38]

Don A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier-Stokes equations, Phys. D, 60 (1992), 165-174, Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). doi: 10.1016/0167-2789(92)90233-D. Google Scholar

[39]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159. Google Scholar

[40]

N. Ju, Global Uniform Boundedness of Solutions to viscous 3D Primitive Equations with Physical Boundary Conditions, preprint, arXiv: 1710.04622v2.Google Scholar

[41]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155. doi: 10.1007/s00332-014-9223-8. Google Scholar

[42]

E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.Google Scholar

[43]

G. M. Kobelkov, Existence of a solution "in the large" for ocean dynamics equations, J. Math. Fluid Mech., 9 (2007), 588-610. doi: 10.1007/s00021-006-0228-4. Google Scholar

[44]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three, C. R. Math. Acad. Sci. Paris, 345 (2007), 257-260. doi: 10.1016/j.crma.2007.07.025. Google Scholar

[45]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[46]

I. Kukavica and M. Ziane, Uniform gradient bounds for the primitive equations of the ocean, Differential Integral Equations, 21 (2008), 837-849. Google Scholar

[47]

I. Kukavica and M. Ziane, Primitive equations with continuous initial data, Nonlinearity, 27 (2014), 1135-1155. doi: 10.1088/0951-7715/27/6/1135. Google Scholar

[48]

I. KukavicaR. TemamV. Vicol and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data, C. R. Math. Acad. Sci. Paris, 348 (2010), 639-645. doi: 10.1006/jmaa.1999.6354. Google Scholar

[49]

I. KukavicaR. TemamV. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. of Differential Equations, 250 (2011), 1719-1746. doi: 10.1016/j.jde.2010.07.032. Google Scholar

[50]

A. Larios and Y. Pei, Nonlinear continuous data assimilation, preprint, arXiv: 1703.03546.Google Scholar

[51]

K. Law, A. Stuart and K. Zygalakis, A Mathematical Introduction to Data Assimilation, Vol. 62 of Texts in Applied Mathematics, Springer, Cham, 2015.Google Scholar

[52]

J. Li and E. S. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data, SIAM J. Math. Anal., 49 (2017), 1-28. doi: 10.1137/15M1050513. Google Scholar

[53]

J.-L. LionsR. Temam and S. Wang, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 5 (1992), 237-288. doi: 10.1088/0951-7715/29/4/1292. Google Scholar

[54]

J.-L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. Google Scholar

[55]

J.-L. LionsR. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl. (9), 74 (1992), 105-163. Google Scholar

[56]

A. LorencW. Adams and J. Eyre, The treatment of humidity in ECMWF's data assimilation scheme, Atmospheric Water Vapor, Academic Press New York, (1980), 497-512. Google Scholar

[57]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328. doi: 10.1088/0951-7715/29/4/1292. Google Scholar

[58]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271. doi: 10.1007/s00205-011-0485-0. Google Scholar

[59]

C. Mondaini and E. S. Titi, Postprocessing Galerkin method applied to a data assimilation algorithm: a uniform in time error estimate, preprint arXiv: 1612.06998.Google Scholar

[60]

E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), 799-840. doi: 10.1023/A:1027312703252. Google Scholar

[61]

J. Pedlosky, Geophysical Fluid Dynamics, Springer New York, 1987.Google Scholar

[62]

M. Petcu, Gevrey class regularity for the primitive equations in space dimension 2, Asymptot. Anal., 39 (2004), 1-13. Google Scholar

[63]

M. Renardy, Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 194 (2009), 877-886. doi: 10.1007/s00205-008-0207-4. Google Scholar

[64]

A. RousseauA. R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity, Discrete Contin. Dyn. Syst., 13 (2005), 1257-1276. doi: 10.3934/dcds.2005.13.1257. Google Scholar

[65]

A. RousseauA. R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl. (9), 89 (2008), 297-319. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[66]

M. Schonbek and G. K. Vallis, Energy decay of solutions to the Boussinesq, primitive, and planetary geostrophic equations, J. Math. Anal. Appl., 234 (1999), 457-481. Google Scholar

[67]

E. Simonnet, T. Tachim-Medjo and R. Temam, Higher order approximation equations for the primitive equations of the ocean, Variational analysis and applications, Springer, 79 (2005), 1025-1048. doi: 10.1007/0-387-24276-7_60. Google Scholar

[68]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.Google Scholar

[69]

M. Ziane, Regularity results for Stokes type systems related to climatology, Appl. Math. Lett., 8 (1995), 53-58. doi: 10.1016/0893-9659(94)00110-X. Google Scholar

[70]

M. Ziane, Regularity results for the stationary primitive equations of the atmosphere and the ocean, Nonlinear Anal., 28 (1997), 289-313. doi: 10.1016/0362-546X(95)00154-N. Google Scholar

show all references

References:
[1]

D. A. AlbanezH. J. Nussenzveig Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier-Stokes-α model, Asymptotic Anal., 97 (2016), 139-164. doi: 10.3233/ASY-151351. Google Scholar

[2]

M. U. AltafE. S. TitiT. GebraelO. M. KnioL. ZhaoM. F. McCabe and I. Hoteit, Downscaling the 2D Bénard convection equations using continuous data assimilation, Computational Geosciences, (2017), 1-18. doi: 10.1007/s10596-017-9619-2. Google Scholar

[3]

A. AzouaniE. Olson and E. S. Titi, Continuous data assimilation using general interpolant observables, J. Nonlinear Sci., 24 (2014), 277-304. doi: 10.1007/s00332-013-9189-y. Google Scholar

[4]

A. Azouani and E. S. Titi, Feedback control of nonlinear dissipative systems by finite determining parameters-a reaction-diffusion paradigm, Evol. Equ. Control Theory, 3 (2014), 579-594. doi: 10.3934/eect.2014.3.579. Google Scholar

[5]

H. BessaihE. Olson and E. S. Titi, Continuous data assimilation with stochastically noisy data, Nonlinearity, 28 (2015), 729-753. doi: 10.1088/0951-7715/28/3/729. Google Scholar

[6]

A. Biswas, J. Hudson, A. Larios and Y. Pei, Continuous data assimilation for the magneto-hydrodynamic equations in 2D using one component of the velocity and magnetic fields, Asymptot. Anal., (2018), to appear.Google Scholar

[7]

A. Biswas and V. R. Martinez, Higher-order synchronization for a data assimilation algorithm for the 2D Navier-Stokes equations, Nonlinearity, 35 (2017), 132-157. doi: 10.1016/j.nonrwa.2016.10.005. Google Scholar

[8]

D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, Asymptotic derivation of a Navier condition for the primitive equations, Asymptot. Anal., 33 (2003), 237-259 Google Scholar

[9]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94. Google Scholar

[10]

D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, Uniqueness of solution for the 2D primitive equations with friction condition on the bottom, in Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics (Spanish) (Jaca, 2001) (eds. E.H. Zarantonello and Author 2), Univ. Zaragoza, 27 (2003), 135-143. Google Scholar

[11]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482. doi: 10.1007/s00220-015-2365-1. Google Scholar

[12]

C. CaoI. G. Kevrekidis and E. S. Titi, Numerical criterion for the stabilization of steady states of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 37-96. doi: 10.1512/iumj.2001.50.2154. Google Scholar

[13]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76. doi: 10.1007/s00205-014-0752-y. Google Scholar

[14]

C. CaoJ. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differential Equations, 257 (2014), 4108-4132. doi: 10.1016/j.jde.2014.08.003. Google Scholar

[15]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531. doi: 10.1002/cpa.21576. Google Scholar

[16]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: near $H^1$initial data, J. Funct. Anal., 272 (2017), 4606-4641. doi: 10.1016/j.jfa.2017.01.018. Google Scholar

[17]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166 (2007), 245-267. doi: 10.4007/annals.2007.166.245. Google Scholar

[18]

C. Cao and E. S. Titi, Global well-posedness of the $3D$ primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys., 310 (2012), 537-563. doi: 10.1007/s00220-011-1409-4. Google Scholar

[19]

I. Chueshov, A squeezing property and its applications to a description of long-time behaviour in the three-dimensional viscous primitive equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 711-729. doi: 10.1017/S0308210512001953. Google Scholar

[20]

P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988.Google Scholar

[21]

R. Daley, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series, 1993.Google Scholar

[22]

R. Errico and D. Baumhefner, Predictability experiments using a high-resolution limited-area model, Monthly Weather Review, 115 (1986), 488-505. Google Scholar

[23]

A. FarhatM. Jolly and E. S. Titi, Continuous data assimilation for the 2D Bénard convection through velocity measurements alone, Phys. D, 303 (2015), 59-66. doi: 10.1016/j.physd.2015.03.011. Google Scholar

[24]

A. FarhatE. Lunasin and E. S. Titi, Abridged continuous data assimilation for the 2D Navier-Stokes Equations utilizing measurements of only one component of the velocity field, J. Math. Fluid Mech., 18 (2016), 1-23. doi: 10.1007/s00021-015-0225-6. Google Scholar

[25]

A. FarhatE. Lunasin and E. S. Titi, Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements, J. of Math. Anal. and Appl., 438 (2016), 492-506. doi: 10.1016/j.jmaa.2016.01.072. Google Scholar

[26]

A. FarhatE. Lunasin and E. S. Titi, Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone, J. of Nonlinear Science, (2017), 1-23. doi: 10.1007/s00332-017-9360-y. Google Scholar

[27]

A. Farhat, E. Lunasin and E. S. Titi, On the Charney Conjecture of Data Assimilation Employing Temperature Measurements Alone: The Paradigm of 3D Planetary Geostrophic Model, preprint arXiv: 1608.04770.Google Scholar

[28]

C. FoiasC. Mondaini and E. S. Titi, A discrete data assimilation scheme for the solutions of the two-dimensional Navier-Stokes equations and their statistics, SIAM J. Appl. Dyn. Syst., 15 (2016), 2109-2142. doi: 10.1137/16M1076526. Google Scholar

[29]

M. GeshoE. Olson and E. S. Titi, A computational study of a data assimilation algorithm for the two-dimensional Navier-Stokes equations, Commun. Comput. Phys., 19 (2016), 1094-1110. Google Scholar

[30]

N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 801-822. doi: 10.3934/dcdsb.2008.10.801. Google Scholar

[31]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408. Google Scholar

[32]

B. Guo and D. Huang, On the 3D viscous primitive equations of the large-scale atmosphere, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 846-866. doi: 10.1016/S0252-9602(09)60074-6. Google Scholar

[33]

K. HaydenE. Olson and E. S. Titi, Discrete data assimilation in the Lorenz and 2D Navier-Stokes equations, Phys. D, 240 (2011), 1416-1425. doi: 10.1016/j.physd.2011.04.021. Google Scholar

[34]

J. Hoke and R. Anthes, The initialization of numerical models by a dynamic relaxation technique, Monthly Weather Review, 104 (1976), 1551-1556. Google Scholar

[35]

C. Hu, Asymptotic analysis of the primitive equations under the small depth assumption, Nonlinear Anal., 61 (2005), 425-460. doi: 10.1016/j.na.2004.12.005. Google Scholar

[36]

C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, in Frontiers in mathematical analysis and numerical methods, World Sci. Publ., (2004), 149-170. Google Scholar

[37]

M. JollyV. R. Martinez and E. S. Titi, A data assimilation algorithm for the subcritical surface quasi-geostrophic equation, Adv. Nonlinear Stud., 17 (2017), 167-192. doi: 10.1515/ans-2016-6019. Google Scholar

[38]

Don A. Jones and E. S. Titi, Determining finite volume elements for the 2D Navier-Stokes equations, Phys. D, 60 (1992), 165-174, Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). doi: 10.1016/0167-2789(92)90233-D. Google Scholar

[39]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179. doi: 10.3934/dcds.2007.17.159. Google Scholar

[40]

N. Ju, Global Uniform Boundedness of Solutions to viscous 3D Primitive Equations with Physical Boundary Conditions, preprint, arXiv: 1710.04622v2.Google Scholar

[41]

N. Ju and R. Temam, Finite dimensions of the global attractor for 3D primitive equations with viscosity, J. Nonlinear Sci., 25 (2015), 131-155. doi: 10.1007/s00332-014-9223-8. Google Scholar

[42]

E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.Google Scholar

[43]

G. M. Kobelkov, Existence of a solution "in the large" for ocean dynamics equations, J. Math. Fluid Mech., 9 (2007), 588-610. doi: 10.1007/s00021-006-0228-4. Google Scholar

[44]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three, C. R. Math. Acad. Sci. Paris, 345 (2007), 257-260. doi: 10.1016/j.crma.2007.07.025. Google Scholar

[45]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[46]

I. Kukavica and M. Ziane, Uniform gradient bounds for the primitive equations of the ocean, Differential Integral Equations, 21 (2008), 837-849. Google Scholar

[47]

I. Kukavica and M. Ziane, Primitive equations with continuous initial data, Nonlinearity, 27 (2014), 1135-1155. doi: 10.1088/0951-7715/27/6/1135. Google Scholar

[48]

I. KukavicaR. TemamV. Vicol and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data, C. R. Math. Acad. Sci. Paris, 348 (2010), 639-645. doi: 10.1006/jmaa.1999.6354. Google Scholar

[49]

I. KukavicaR. TemamV. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. of Differential Equations, 250 (2011), 1719-1746. doi: 10.1016/j.jde.2010.07.032. Google Scholar

[50]

A. Larios and Y. Pei, Nonlinear continuous data assimilation, preprint, arXiv: 1703.03546.Google Scholar

[51]

K. Law, A. Stuart and K. Zygalakis, A Mathematical Introduction to Data Assimilation, Vol. 62 of Texts in Applied Mathematics, Springer, Cham, 2015.Google Scholar

[52]

J. Li and E. S. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data, SIAM J. Math. Anal., 49 (2017), 1-28. doi: 10.1137/15M1050513. Google Scholar

[53]

J.-L. LionsR. Temam and S. Wang, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 5 (1992), 237-288. doi: 10.1088/0951-7715/29/4/1292. Google Scholar

[54]

J.-L. LionsR. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. Google Scholar

[55]

J.-L. LionsR. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl. (9), 74 (1992), 105-163. Google Scholar

[56]

A. LorencW. Adams and J. Eyre, The treatment of humidity in ECMWF's data assimilation scheme, Atmospheric Water Vapor, Academic Press New York, (1980), 497-512. Google Scholar

[57]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328. doi: 10.1088/0951-7715/29/4/1292. Google Scholar

[58]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271. doi: 10.1007/s00205-011-0485-0. Google Scholar

[59]

C. Mondaini and E. S. Titi, Postprocessing Galerkin method applied to a data assimilation algorithm: a uniform in time error estimate, preprint arXiv: 1612.06998.Google Scholar

[60]

E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, J. Statist. Phys., 113 (2003), 799-840. doi: 10.1023/A:1027312703252. Google Scholar

[61]

J. Pedlosky, Geophysical Fluid Dynamics, Springer New York, 1987.Google Scholar

[62]

M. Petcu, Gevrey class regularity for the primitive equations in space dimension 2, Asymptot. Anal., 39 (2004), 1-13. Google Scholar

[63]

M. Renardy, Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 194 (2009), 877-886. doi: 10.1007/s00205-008-0207-4. Google Scholar

[64]

A. RousseauA. R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity, Discrete Contin. Dyn. Syst., 13 (2005), 1257-1276. doi: 10.3934/dcds.2005.13.1257. Google Scholar

[65]

A. RousseauA. R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl. (9), 89 (2008), 297-319. doi: 10.1016/j.matpur.2007.12.001. Google Scholar

[66]

M. Schonbek and G. K. Vallis, Energy decay of solutions to the Boussinesq, primitive, and planetary geostrophic equations, J. Math. Anal. Appl., 234 (1999), 457-481. Google Scholar

[67]

E. Simonnet, T. Tachim-Medjo and R. Temam, Higher order approximation equations for the primitive equations of the ocean, Variational analysis and applications, Springer, 79 (2005), 1025-1048. doi: 10.1007/0-387-24276-7_60. Google Scholar

[68]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.Google Scholar

[69]

M. Ziane, Regularity results for Stokes type systems related to climatology, Appl. Math. Lett., 8 (1995), 53-58. doi: 10.1016/0893-9659(94)00110-X. Google Scholar

[70]

M. Ziane, Regularity results for the stationary primitive equations of the atmosphere and the ocean, Nonlinear Anal., 28 (1997), 289-313. doi: 10.1016/0362-546X(95)00154-N. Google Scholar

[1]

Joshua Hudson, Michael Jolly. Numerical efficacy study of data assimilation for the 2D magnetohydrodynamic equations. Journal of Computational Dynamics, 2019, 6 (1) : 131-145. doi: 10.3934/jcd.2019006

[2]

T. Tachim Medjo. Robust control problems for primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 769-788. doi: 10.3934/dcdsb.2011.15.769

[3]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[4]

M. Petcu, Roger Temam, D. Wirosoetisno. Existence and regularity results for the primitive equations in two space dimensions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 115-131. doi: 10.3934/cpaa.2004.3.115

[5]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[6]

Débora A. F. Albanez, Maicon J. Benvenutti. Continuous data assimilation algorithm for simplified Bardina model. Evolution Equations & Control Theory, 2018, 7 (1) : 33-52. doi: 10.3934/eect.2018002

[7]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[10]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[11]

Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571

[12]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

[13]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[14]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[15]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[16]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[17]

Cheng Wang. The primitive equations formulated in mean vorticity. Conference Publications, 2003, 2003 (Special) : 880-887. doi: 10.3934/proc.2003.2003.880

[18]

Roger Temam, D. Wirosoetisno. Exponential approximations for the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 425-440. doi: 10.3934/dcdsb.2007.7.425

[19]

Brian D. Ewald, Roger Témam. Maximum principles for the primitive equations of the atmosphere. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 343-362. doi: 10.3934/dcds.2001.7.343

[20]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (29)
  • HTML views (123)
  • Cited by (0)

Other articles
by authors

[Back to Top]