November  2018, 17(6): 2593-2621. doi: 10.3934/cpaa.2018123

The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior

1. 

Department of Mathematics and Computer Science, University of Dschang, P.O. BOX 67, Dschang, Cameroon

2. 

Department of Mathematics, Florida International University, MMC, Miami, Florida 33199, USA

* Corresponding author

Received  October 2016 Revised  July 2017 Published  June 2018

Citation: G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123
References:
[1]

D. BarbatoM. BarsatiH. Bessaih and F. Flandoli, Some rigorous results on a stochastic Goy model, J. Stat. Phys., 125 (2006), 677-716. doi: 10.1007/s10955-006-9203-y. Google Scholar

[2]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304. doi: 10.1007/BF00996149. Google Scholar

[3]

A. Bensoussan and R. Temam, Equations stochastiques de type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. Google Scholar

[4]

H. Bessaih and A. Millet, Large deviation principle and inviscid shell models, Electron. J. Probab., 14 (2009), 2551-2579. doi: 10.1214/EJP.v14-719. Google Scholar

[5]

H. BessaihF. Flandoli and E. S. Titi, Stochastic attractors for shell phenomenological models of turbulence, J. Stat. Phys., 140 (2010), 688-717. doi: 10.1007/s10955-010-0010-0. Google Scholar

[6]

T. CaraballoP. E. Kloeden and J. Real, Unique strong solutions and V-attractors of a 3- dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436. doi: 10.1515/ans-2006-0304. Google Scholar

[7]

T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, Recent trends in Dynamical Systems, Springer Proc. Math. Stat., 35, 473-492 Springer, Basel, 2013. doi: 10.1007/978-3-0348-0451-6_18. Google Scholar

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61 (2010), 379-420. doi: 10.1007/s00245-009-9091-z. Google Scholar

[9]

P. Constantin, Near Identity Transformations for the Navier-Stokes Equations, in Handbook of Mathematical Fluid Dynamics, Vol. Ⅱ, 117-141, North-Holland, Amsterdam, 2003. doi: 10.1016/S1874-5792(03)80006-X. Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its applications, vol. 44, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. Google Scholar

[11]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144. doi: 10.1016/j.physd.2011.03.009. Google Scholar

[12]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified 3- dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029. doi: 10.1016/j.cam.2010.10.003. Google Scholar

[13]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 307-391. doi: 10.1007/BF01192467. Google Scholar

[14]

F. Flandoli, An introduction to 3d stochastic fluid dynamics, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics, vol. 1992, 51-150, Springer Berlin, Heidelberg, 2008. doi: 10. 1007/978-3-540-78493-7_2. Google Scholar

[15]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172 (1995), 119-141. Google Scholar

[16]

F. FlandoliM. GubinelliM. Hairer and M. Romito, Rigorous remarks about scaling laws in turbulent fluid, Commun. Math. Phys., 278 (2008), 1-29. doi: 10.1007/s00220-007-0398-9. Google Scholar

[17] I. I. Gikhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972. Google Scholar
[18]

N. Glatz-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Advances in Differential Equations, 14 (2009), 567-600. Google Scholar

[19]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland, Kodansha, 1989. Google Scholar

[20]

A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, translated from Teor. Veroyatnost. i Primenen, 42 (1997), 209-216. doi: 10.1137/S0040585X97976052. Google Scholar

[21]

P. E. Kloeden and J. Valero, The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 463 (2007), 1491-1508. doi: 10.1098/rspa.2007.1831. Google Scholar

[22]

P. E. KloedenJ. A. Langa and J. Real, Pullback V-attractors of the three dimensional globally modified Navier-Stokes equations: existence and finite fractal dimension, Commun. Pure Appl. Anal., 6 (2007), 937-955. doi: 10.3934/cpaa.2007.6.937. Google Scholar

[23]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785. Google Scholar

[24]

A. Kupiainen, Statistical Theories of Turbulence, In advances in Mathematical Sciences and Applications. Gakkotosho, Tokyo, 2003.Google Scholar

[25]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux limites Non linéaires, Dunod, Paris, 1969. Google Scholar

[26]

P. Marín-RubioA. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927. doi: 10.1515/ans-2011-0409. Google Scholar

[27]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673. doi: 10.3934/dcdsb.2010.14.655. Google Scholar

[28]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 779-796. doi: 10.3934/dcds.2011.31.779. Google Scholar

[29]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal., 79 (2013), 68-79. doi: 10.1016/j.na.2012.11.006. Google Scholar

[30]

R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations and Turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310. doi: 10.1137/S0036141002409167. Google Scholar

[31]

C. Prévȏt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer-Verlag, 2007. Google Scholar

[32] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar
[33]

M. Romito, The uniqueness of weak solution of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427. doi: 10.1515/ans-2009-0209. Google Scholar

[34]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviation principles, J. Differential Equations, 252 (2012), 716-744. doi: 10.1016/j.jde.2011.09.030. Google Scholar

[35]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977. Google Scholar

[36]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050. Google Scholar

show all references

References:
[1]

D. BarbatoM. BarsatiH. Bessaih and F. Flandoli, Some rigorous results on a stochastic Goy model, J. Stat. Phys., 125 (2006), 677-716. doi: 10.1007/s10955-006-9203-y. Google Scholar

[2]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304. doi: 10.1007/BF00996149. Google Scholar

[3]

A. Bensoussan and R. Temam, Equations stochastiques de type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. Google Scholar

[4]

H. Bessaih and A. Millet, Large deviation principle and inviscid shell models, Electron. J. Probab., 14 (2009), 2551-2579. doi: 10.1214/EJP.v14-719. Google Scholar

[5]

H. BessaihF. Flandoli and E. S. Titi, Stochastic attractors for shell phenomenological models of turbulence, J. Stat. Phys., 140 (2010), 688-717. doi: 10.1007/s10955-010-0010-0. Google Scholar

[6]

T. CaraballoP. E. Kloeden and J. Real, Unique strong solutions and V-attractors of a 3- dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 6 (2006), 411-436. doi: 10.1515/ans-2006-0304. Google Scholar

[7]

T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, Recent trends in Dynamical Systems, Springer Proc. Math. Stat., 35, 473-492 Springer, Basel, 2013. doi: 10.1007/978-3-0348-0451-6_18. Google Scholar

[8]

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61 (2010), 379-420. doi: 10.1007/s00245-009-9091-z. Google Scholar

[9]

P. Constantin, Near Identity Transformations for the Navier-Stokes Equations, in Handbook of Mathematical Fluid Dynamics, Vol. Ⅱ, 117-141, North-Holland, Amsterdam, 2003. doi: 10.1016/S1874-5792(03)80006-X. Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its applications, vol. 44, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. Google Scholar

[11]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144. doi: 10.1016/j.physd.2011.03.009. Google Scholar

[12]

G. Deugoué and J. K. Djoko, On the time discretization for the globally modified 3- dimensional Navier-Stokes equations, J. Comput. Appl. Math., 235 (2011), 2015-2029. doi: 10.1016/j.cam.2010.10.003. Google Scholar

[13]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 307-391. doi: 10.1007/BF01192467. Google Scholar

[14]

F. Flandoli, An introduction to 3d stochastic fluid dynamics, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics, vol. 1992, 51-150, Springer Berlin, Heidelberg, 2008. doi: 10. 1007/978-3-540-78493-7_2. Google Scholar

[15]

F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbations, Commun. Math. Phys., 172 (1995), 119-141. Google Scholar

[16]

F. FlandoliM. GubinelliM. Hairer and M. Romito, Rigorous remarks about scaling laws in turbulent fluid, Commun. Math. Phys., 278 (2008), 1-29. doi: 10.1007/s00220-007-0398-9. Google Scholar

[17] I. I. Gikhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972. Google Scholar
[18]

N. Glatz-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Advances in Differential Equations, 14 (2009), 567-600. Google Scholar

[19]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second edition, North-Holland, Kodansha, 1989. Google Scholar

[20]

A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, translated from Teor. Veroyatnost. i Primenen, 42 (1997), 209-216. doi: 10.1137/S0040585X97976052. Google Scholar

[21]

P. E. Kloeden and J. Valero, The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 463 (2007), 1491-1508. doi: 10.1098/rspa.2007.1831. Google Scholar

[22]

P. E. KloedenJ. A. Langa and J. Real, Pullback V-attractors of the three dimensional globally modified Navier-Stokes equations: existence and finite fractal dimension, Commun. Pure Appl. Anal., 6 (2007), 937-955. doi: 10.3934/cpaa.2007.6.937. Google Scholar

[23]

P. E. KloedenP. Marín-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785. Google Scholar

[24]

A. Kupiainen, Statistical Theories of Turbulence, In advances in Mathematical Sciences and Applications. Gakkotosho, Tokyo, 2003.Google Scholar

[25]

J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux limites Non linéaires, Dunod, Paris, 1969. Google Scholar

[26]

P. Marín-RubioA. M. Márquez-Durán and J. Real, On the convergence of solutions of globally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays, Adv. Nonlinear Stud., 11 (2011), 917-927. doi: 10.1515/ans-2011-0409. Google Scholar

[27]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673. doi: 10.3934/dcdsb.2010.14.655. Google Scholar

[28]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 779-796. doi: 10.3934/dcds.2011.31.779. Google Scholar

[29]

P. Marín-RubioA. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for a three dimensional system of globally modified Navier-Stokes equations with a locally Lipschitz delay term, Nonlinear Anal., 79 (2013), 68-79. doi: 10.1016/j.na.2012.11.006. Google Scholar

[30]

R. Mikulevicius and B. L. Rozovskii, Stochastic Navier-Stokes equations and Turbulent flows, SIAM J. Math. Anal., 35 (2004), 1250-1310. doi: 10.1137/S0036141002409167. Google Scholar

[31]

C. Prévȏt and M. Röckner, A concise Course on Stochastic Partial Differential Equations, Springer-Verlag, 2007. Google Scholar

[32] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0. Google Scholar
[33]

M. Romito, The uniqueness of weak solution of the globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 9 (2009), 425-427. doi: 10.1515/ans-2009-0209. Google Scholar

[34]

M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviation principles, J. Differential Equations, 252 (2012), 716-744. doi: 10.1016/j.jde.2011.09.030. Google Scholar

[35]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977. Google Scholar

[36]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995. doi: 10.1137/1.9781611970050. Google Scholar

[1]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[2]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[3]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[4]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[5]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[6]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[7]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[8]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[9]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[10]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[11]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[12]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[13]

P.E. Kloeden, José A. Langa, José Real. Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 937-955. doi: 10.3934/cpaa.2007.6.937

[14]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Three dimensional system of globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 655-673. doi: 10.3934/dcdsb.2010.14.655

[15]

Chuong V. Tran, Theodore G. Shepherd, Han-Ru Cho. Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 483-494. doi: 10.3934/dcdsb.2002.2.483

[16]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[17]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[18]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[19]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[20]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (72)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]