• Previous Article
    Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle
  • CPAA Home
  • This Issue
  • Next Article
    On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain
July  2018, 17(4): 1671-1680. doi: 10.3934/cpaa.2018080

Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  June 2017 Revised  December 2017 Published  April 2018

Fund Project: The author is supported by JSPS KAKENHI Grant Number 15K04968

We study the instability of standing wave solutions for nonlinear Schrödinger equations with a one-dimensional harmonic potential in dimension $N≥2$. We prove that if the nonlinearity is $L^2$-critical or supercritical in dimension $N-1$, then any ground states are strongly unstable by blowup.

Citation: Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080
References:
[1]

P. AntonelliR. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396. Google Scholar

[2]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251. Google Scholar

[3]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492. Google Scholar

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. Google Scholar

[5]

R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. Google Scholar

[8]

R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276. Google Scholar

[9]

R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128. Google Scholar

[10]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706. Google Scholar

[11]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. Google Scholar

[12]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. Google Scholar

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. Google Scholar

[14]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. Google Scholar

[15]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448. Google Scholar

[16]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. Google Scholar

[17]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143. Google Scholar

[18]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58. Google Scholar

[19]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.Google Scholar

[20]

S. TerraciniN. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96. Google Scholar

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.Google Scholar

show all references

References:
[1]

P. AntonelliR. Carles and J. Drumond Silva, Scattering for nonlinear Schrödinger equation under partial harmonic confinement, Comm. Math. Phys., 334 (2015), 367-396. Google Scholar

[2]

J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251. Google Scholar

[3]

H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981), 489-492. Google Scholar

[4]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. Google Scholar

[5]

R. Carles and C. Gallo, Scattering for the nonlinear Schr¨odinger equation with a general one-dimensional confinement, J. Math. Phys., 56 (2015), 101503, 15 pp.Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.Google Scholar

[7]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. Google Scholar

[8]

R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with critical power nonlinearity and potentials, Adv. Differential Equations, 10 (2005), 259-276. Google Scholar

[9]

R. Fukuizumi and M. Ohta, Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 111-128. Google Scholar

[10]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16 (2003), 691-706. Google Scholar

[11]

M. Hirose and M. Ohta, Structure of positive radial solutions to scalar field equations with harmonic potential, J. Differential Equations, 178 (2002), 519-540. Google Scholar

[12]

M. Hirose and M. Ohta, Uniqueness of positive solutions to scalar field equations with harmonic potential, Funkcial. Ekvac., 50 (2007), 67-100. Google Scholar

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p = 0$ in $\mathbf{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266. Google Scholar

[14]

S. Le Coz, A note on Berestycki-Cazenave's classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8 (2008), 455-463. Google Scholar

[15]

E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448. Google Scholar

[16]

Y. Martel, Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces, Nonlinear Anal., 28 (1997), 1903-1908. Google Scholar

[17]

M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61 (2018), 135-143. Google Scholar

[18]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51 (2015), 49-58. Google Scholar

[19]

M. Ohta and T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56 (2016), 79-92.Google Scholar

[20]

S. TerraciniN. Tzvetkov and N. Visciglia, The nonlinear Schrödinger equation ground states on product spaces, Anal. PDE, 7 (2014), 73-96. Google Scholar

[21]

J. Zhang, Cross-constrained variational problem and nonlinear Schrödinger equation, in Foundations of Computational Mathematics, World Scientific Publishing, River Edge, NJ, (2002), 457-469.Google Scholar

[1]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[2]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[3]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[4]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[5]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[6]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[7]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[8]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[9]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[10]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[11]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[12]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[13]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[14]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[15]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[16]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[17]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[18]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[19]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[20]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (37)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]