# American Institute of Mathematical Sciences

May  2018, 17(3): 1023-1052. doi: 10.3934/cpaa.2018050

## Spaces admissible for the Sturm-Liouville equation

 1 Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel 2 Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel

Received  August 2016 Revised  November 2017 Published  January 2018

We consider the equation
 $-{y}''(x)+q(x)y(x)=f(x),\ \ \ \ x\in \mathbb{R}\text{ }\ \ \ \ \ \ \ \ \ \ \left( 1 \right)$
where
 $f∈ L_p^{\text{loc}}(\mathbb R),$
 $p∈[1,∞)$
and
 $0≤ q∈ L_1^{\text{loc}}(\mathbb R).$
By a solution of (1) we mean any function
 $y,$
absolutely continuous together with its derivative and satisfying (1) almost everywhere in
 $\mathbb R.$
Let positive and continuous functions
 $μ(x)$
and
 $θ(x)$
for
 $x∈\mathbb R$
be given. Let us introduce the spaces
 \begin{align} & {{L}_{p}}(\mathbb{R},\mu )=\left\{ f\in L_{p}^{\text{loc}}(\mathbb{R}):\|f\|_{{{L}_{p}}(\mathbb{R},\mu )}^{p}=\int_{-\infty }^{\infty }{|}\mu (x)f(x){{|}^{p}}dx < \infty \right\}, \\ & {{L}_{p}}(\mathbb{R},\theta )=\left\{ f\in L_{p}^{\text{loc}}(\mathbb{R}):\|f\|_{{{L}_{p}}(\mathbb{R},\theta )}^{p}=\int_{-\infty }^{\infty }{|}\theta (x)f(x){{|}^{p}}dx <\infty \right\}. \\ \end{align}
In the present paper, we obtain requirements to the functions
 $μ,θ$
and
 $q$
under which
1) for every function
 $f∈ L_p(\mathbb R,θ)$
there exists a unique solution (1)
 $y∈ L_p(\mathbb R,μ)$
of (1);
2) there is an absolute constant
 $c(p)∈(0,∞)$
such that regardless of the choice of a function
 $f∈ L_p(\mathbb R,θ)$
the solution of (1) satisfies the inequality
 $\|y\|_{L_p(\mathbb R,μ)}≤ c(p)\|f\|_{L_p(\mathbb R,θ)}.$
Citation: N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050
##### References:
 [1] N. Chernyavskaya and L. Shuster, On the WKB-method, Diff. Uravnenija, 25 (1989), 1826-1829. Google Scholar [2] N. Chernyavskaya and L. Shuster, Estimates for the Green function of a general Sturm-Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. Google Scholar [3] N. Chernyavskaya and L. Shuster, A criterion for correct solvability of the Sturm-Liouville equation in the space Lp(R), Proc. Amer. Math. Soc., 130 (2002), 1043-1054. Google Scholar [4] N. Chernyavskaya and L. Shuster, Classification of initial data for the Riccati equation, Boll. Unione Mat. Ital., 8 (2002), 511-525. Google Scholar [5] N. Chernyavskaya and L. Shuster, Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. Google Scholar [6] N. Chernyavskaya and L. Shuster, A criteria for correct solvability in Lp(R) of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. Google Scholar [7] R. Courant, Differential and Integral Calculus, Vol. Ⅱ, Blackie and Son, Glasgow and London, 1936. Google Scholar [8] E. B. Davies and E. M. Harrell, Conformally flat Riemannian metrics, Schrödinger operators and semiclassical approximation, J. Diff. Eq., 66 (1987), 165-188. Google Scholar [9] E. Goursat, A Course in Mathematical Analysis, Vol. 1, Ch. IV, $\S$75, New York, Dover Publications, 1959. Google Scholar [10] L. W. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. Google Scholar [11] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific Publishing Co., 2003. Google Scholar [12] J. L. Masssera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, Vol. 21, Academic Press, New York -London, 1966. Google Scholar [13] K. Mynbaev and M. Otelbaev, Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. Google Scholar [14] M. Otelbaev, A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. Google Scholar [15] C. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939. Google Scholar

show all references

##### References:
 [1] N. Chernyavskaya and L. Shuster, On the WKB-method, Diff. Uravnenija, 25 (1989), 1826-1829. Google Scholar [2] N. Chernyavskaya and L. Shuster, Estimates for the Green function of a general Sturm-Liouville operator and their applications, Proc. Amer. Math. Soc., 127 (1999), 1413-1426. Google Scholar [3] N. Chernyavskaya and L. Shuster, A criterion for correct solvability of the Sturm-Liouville equation in the space Lp(R), Proc. Amer. Math. Soc., 130 (2002), 1043-1054. Google Scholar [4] N. Chernyavskaya and L. Shuster, Classification of initial data for the Riccati equation, Boll. Unione Mat. Ital., 8 (2002), 511-525. Google Scholar [5] N. Chernyavskaya and L. Shuster, Davies-Harrell representations, Otelbaev's inequalities and properties of solutions of Riccati equations, J. Math. Anal. Appl., 334 (2007), 998-1021. Google Scholar [6] N. Chernyavskaya and L. Shuster, A criteria for correct solvability in Lp(R) of a general Sturm-Liouville equation, J. London Math. Soc. (2), 80 (2009), 99-120. Google Scholar [7] R. Courant, Differential and Integral Calculus, Vol. Ⅱ, Blackie and Son, Glasgow and London, 1936. Google Scholar [8] E. B. Davies and E. M. Harrell, Conformally flat Riemannian metrics, Schrödinger operators and semiclassical approximation, J. Diff. Eq., 66 (1987), 165-188. Google Scholar [9] E. Goursat, A Course in Mathematical Analysis, Vol. 1, Ch. IV, $\S$75, New York, Dover Publications, 1959. Google Scholar [10] L. W. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977. Google Scholar [11] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific Publishing Co., 2003. Google Scholar [12] J. L. Masssera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, Vol. 21, Academic Press, New York -London, 1966. Google Scholar [13] K. Mynbaev and M. Otelbaev, Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moscow, 1988. Google Scholar [14] M. Otelbaev, A criterion for the resolvent of a Sturm-Liouville operator to be a kernel, Math. Notes, 25 (1979), 296-297. Google Scholar [15] C. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939. Google Scholar
 [1] Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 [2] Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 [3] Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052 [4] Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018145 [5] Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019066 [6] SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026 [7] Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 [8] Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993 [9] Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549 [10] Sun-Yung Alice Chang, Yu Yuan. A Liouville problem for the Sigma-2 equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 659-664. doi: 10.3934/dcds.2010.28.659 [11] Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043 [12] Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947 [13] Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 [14] Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865 [15] Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561 [16] Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915 [17] Yutian Lei. Liouville theorems and classification results for a nonlocal Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5351-5377. doi: 10.3934/dcds.2018236 [18] Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 645-662. doi: 10.3934/dcdss.2020035 [19] Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080 [20] Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

2018 Impact Factor: 0.925