• Previous Article
    On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation
  • CPAA Home
  • This Issue
  • Next Article
    The regularity of some vector-valued variational inequalities with gradient constraints
March  2018, 17(2): 429-448. doi: 10.3934/cpaa.2018024

Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model

1. 

Univ. Lille, CNRS, UMR 8524 -Laboratoire Paul Painlevé, F-59000 Lille, France

2. 

Unité de recherche : Multifractals et Ondelettes, FSM, University of Monastir, 5019 Monastir, Tunisia

3. 

FSEGN, University of Carthage, 8000 Nabeul, Tunisia

* Corresponding author

Received  June 2016 Revised  September 2017 Published  March 2018

In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.

Citation: Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024
References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, 22, North-Holland, Publishing Co. , Amesterdam, 1990. Google Scholar

[2]

D. BreschE. H. Essoufi and M. Sy, Effects of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397. Google Scholar

[3]

R. C. CabralesF. Guillén-González and J. V. Gutiérrez-Santacreu, Stability and convergence for a complete model of mass diffusion, Applied Numerical Mathematics, 61 (2011), 1161-1185. Google Scholar

[4]

X. CaiL. Liao and Y. Sun, Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model, Nonlinear Analysis, 75 (2012), 5975-5983. Google Scholar

[5]

X. CaiL. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete and Continuous Dynamical Systems, Series S, 7 (2014), 917-923. Google Scholar

[6]

C. CalgaroE. Chane-KaneE. Creusé and T. Goudon, $L^∞$-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios, J. Comput. Physics, 229 (2010), 6027-6046. Google Scholar

[7]

C. CalgaroE. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Physics, 227 (2008), 4671-4696. Google Scholar

[8]

C. CalgaroE. Creusé and T. Goudon, Modeling and simulation of mixture flows: Application to powder-snow avalanches, Computers and Fluids, 107 (2015), 100-122. Google Scholar

[9]

C. Calgaro and M. Ezzoug, $L^∞$-stability of IMEX-BDF2 finite volume scheme for convection-diffusion equation, Finite Volumes for Complex Applications Ⅷ -Methods and Theoretical Aspects, 2 (2017), 245-253. Google Scholar

[10]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979. Google Scholar

[11]

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1575-1619. Google Scholar

[12]

J. Étienne and P. Saramito, A priori error estimates of the Lagrange-Galerkin method for Kazhikhov-Smagulov type systems, C.R. Acad. Sci. Paris Ser. I, 341 (2005), 769-774. Google Scholar

[13]

R. EymardT. Gallouët and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, vol. Ⅶ, North-Holland, Amsterdam, (2000), 713-1020. Google Scholar

[14]

M. FeistauerJ. Felcman and M. Lukáčová-Medvid'ová, On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems, Numerical Methods Partial Differential Equations, 13 (1997), 163-190. Google Scholar

[15]

M. FeistauerJ. FelcmanM. Lukáčová-Medvid'ová and G. Warnecke, Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), 1528-1548. Google Scholar

[16]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithm, Springer Series in Computational Mathematics, Vol 5, Springer-Verlag, Berlin, 1986. Google Scholar

[17]

F. Guillén-GonzálezP. Damázio and M. A. Rojas-Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion, J. Math. Anal. Appl., 326 (2007), 468-487. Google Scholar

[18]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion, Mathematics of Computation., 77 (2008), 1495-1524. Google Scholar

[19]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Conditional stability and convergence of fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J. Numer. Anal., 46 (2008), 2276-2308. Google Scholar

[20]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model, Numer. Math., 117 (2011), 333-371. Google Scholar

[21]

A. Kazhikhov and Sh. Smagulov, The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid, Sov. Phys. Dokl., 22 (1977), 249-252. Google Scholar

[22]

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. Google Scholar

[23]

P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal., 19 (1988), 22-31. Google Scholar

[24]

D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 2003. Google Scholar

[25]

J. Simon, Compact sets in the space $L^p\big(0, T;B\big)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. Google Scholar

[26]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Revised Edition, Studies in mathematics and its applications vol. 2, North Holland Publishing Company-Amsterdam, New York, 1984. Google Scholar

[27]

E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamic; A Practical Introduction, Springer-Verlag, Berlin, 2009. Google Scholar

show all references

References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, 22, North-Holland, Publishing Co. , Amesterdam, 1990. Google Scholar

[2]

D. BreschE. H. Essoufi and M. Sy, Effects of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397. Google Scholar

[3]

R. C. CabralesF. Guillén-González and J. V. Gutiérrez-Santacreu, Stability and convergence for a complete model of mass diffusion, Applied Numerical Mathematics, 61 (2011), 1161-1185. Google Scholar

[4]

X. CaiL. Liao and Y. Sun, Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model, Nonlinear Analysis, 75 (2012), 5975-5983. Google Scholar

[5]

X. CaiL. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete and Continuous Dynamical Systems, Series S, 7 (2014), 917-923. Google Scholar

[6]

C. CalgaroE. Chane-KaneE. Creusé and T. Goudon, $L^∞$-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios, J. Comput. Physics, 229 (2010), 6027-6046. Google Scholar

[7]

C. CalgaroE. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Physics, 227 (2008), 4671-4696. Google Scholar

[8]

C. CalgaroE. Creusé and T. Goudon, Modeling and simulation of mixture flows: Application to powder-snow avalanches, Computers and Fluids, 107 (2015), 100-122. Google Scholar

[9]

C. Calgaro and M. Ezzoug, $L^∞$-stability of IMEX-BDF2 finite volume scheme for convection-diffusion equation, Finite Volumes for Complex Applications Ⅷ -Methods and Theoretical Aspects, 2 (2017), 245-253. Google Scholar

[10]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979. Google Scholar

[11]

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1575-1619. Google Scholar

[12]

J. Étienne and P. Saramito, A priori error estimates of the Lagrange-Galerkin method for Kazhikhov-Smagulov type systems, C.R. Acad. Sci. Paris Ser. I, 341 (2005), 769-774. Google Scholar

[13]

R. EymardT. Gallouët and R. Herbin, Finite Volume Methods, Handbook of Numerical Analysis, vol. Ⅶ, North-Holland, Amsterdam, (2000), 713-1020. Google Scholar

[14]

M. FeistauerJ. Felcman and M. Lukáčová-Medvid'ová, On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems, Numerical Methods Partial Differential Equations, 13 (1997), 163-190. Google Scholar

[15]

M. FeistauerJ. FelcmanM. Lukáčová-Medvid'ová and G. Warnecke, Error estimates for a combined finite volume-finite element method for nonlinear convection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), 1528-1548. Google Scholar

[16]

V. Girault and P. -A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithm, Springer Series in Computational Mathematics, Vol 5, Springer-Verlag, Berlin, 1986. Google Scholar

[17]

F. Guillén-GonzálezP. Damázio and M. A. Rojas-Medar, Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion, J. Math. Anal. Appl., 326 (2007), 468-487. Google Scholar

[18]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion, Mathematics of Computation., 77 (2008), 1495-1524. Google Scholar

[19]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Conditional stability and convergence of fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J. Numer. Anal., 46 (2008), 2276-2308. Google Scholar

[20]

F. Guillén-González and J. V. Gutiérrez-Santacreu, Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion model, Numer. Math., 117 (2011), 333-371. Google Scholar

[21]

A. Kazhikhov and Sh. Smagulov, The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid, Sov. Phys. Dokl., 22 (1977), 249-252. Google Scholar

[22]

J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. Google Scholar

[23]

P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal., 19 (1988), 22-31. Google Scholar

[24]

D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, 2003. Google Scholar

[25]

J. Simon, Compact sets in the space $L^p\big(0, T;B\big)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. Google Scholar

[26]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Revised Edition, Studies in mathematics and its applications vol. 2, North Holland Publishing Company-Amsterdam, New York, 1984. Google Scholar

[27]

E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamic; A Practical Introduction, Springer-Verlag, Berlin, 2009. Google Scholar

[1]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[2]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[3]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[4]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[5]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[6]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[7]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[8]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[9]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[10]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[11]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[12]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[13]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[14]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[15]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[16]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[17]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[18]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[19]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[20]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (128)
  • Cited by (0)

[Back to Top]