# American Institute of Mathematical Sciences

January  2018, 17(1): 231-241. doi: 10.3934/cpaa.2018014

## Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term

 1 Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece 2 Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 3 Department of Mathematics, University of Craiova, 200585 Craiova, Romania 4 Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

* Corresponding author:Vicenţiu D. Rǎdulescu

Received  April 2017 Revised  June 2017 Published  September 2017

Fund Project: This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, J1-7025. V.D. Rǎdulescu acknowledges the support through a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-Ⅲ-P4-ID-PCE-2016-0130, within PNCDI Ⅲ

We consider a nonlinear Robin problem driven by the p-Laplacian plus an indefinite potential. The reaction term is of arbitrary growth and only conditions near zero are imposed. Using critical point theory together with suitable truncation and perturbation techniques and comparison principles, we show that the problem admits a sequence of distinct smooth nodal solutions converging to zero in $C^1(\overline{Ω})$.

Citation: Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014
##### References:
 [1] J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524. Google Scholar [2] M. Filippakis and N. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian, J. Differential Equations, 245 (2008), 1883-1922. doi: 10.1016/j.jde.2008.07.004. Google Scholar [3] G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst., 36 (2016), 6133-6166. doi: 10.3934/dcds.2016068. Google Scholar [4] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar [5] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370. doi: 10.1016/j.jfa.2005.04.005. Google Scholar [6] Z. Li and Z. Q. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1015-1037. doi: 10.1016/j.anihpc.2014.05.002. Google Scholar [7] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. Google Scholar [8] N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar [9] N.S. Papageorgiou and V. D. Rǎdulescu, Infinitely many nodal solutions for nonlinear, nonhomogeneous Robin problems, Adv. Nonlinear Stud., 16 (2016), 287-299. doi: 10.1515/ans-2015-5040. Google Scholar [10] N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764. doi: 10.1515/ans-2016-0023. Google Scholar [11] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111. Google Scholar [12] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Robin problems with indefinite linear part and competition phenomena, Commun. Pure Appl. Anal., 16 (2017), 1293-1314. doi: 10.3934/cpaa.2017063. Google Scholar [13] Z-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 15-33. doi: 10.1007/PL00001436. Google Scholar

show all references

##### References:
 [1] J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524. Google Scholar [2] M. Filippakis and N. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian, J. Differential Equations, 245 (2008), 1883-1922. doi: 10.1016/j.jde.2008.07.004. Google Scholar [3] G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential, Discrete Contin. Dyn. Syst., 36 (2016), 6133-6166. doi: 10.3934/dcds.2016068. Google Scholar [4] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar [5] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370. doi: 10.1016/j.jfa.2005.04.005. Google Scholar [6] Z. Li and Z. Q. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1015-1037. doi: 10.1016/j.anihpc.2014.05.002. Google Scholar [7] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. Google Scholar [8] N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar [9] N.S. Papageorgiou and V. D. Rǎdulescu, Infinitely many nodal solutions for nonlinear, nonhomogeneous Robin problems, Adv. Nonlinear Stud., 16 (2016), 287-299. doi: 10.1515/ans-2015-5040. Google Scholar [10] N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud., 16 (2016), 737-764. doi: 10.1515/ans-2016-0023. Google Scholar [11] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111. Google Scholar [12] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Robin problems with indefinite linear part and competition phenomena, Commun. Pure Appl. Anal., 16 (2017), 1293-1314. doi: 10.3934/cpaa.2017063. Google Scholar [13] Z-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 15-33. doi: 10.1007/PL00001436. Google Scholar
 [1] Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068 [2] Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020 [3] Leszek Gasiński. Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 143-158. doi: 10.3934/dcds.2007.17.143 [4] Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 [5] Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111 [6] Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 [7] Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018 [8] Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 [9] Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 [10] Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 [11] Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 [12] Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 [13] Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593 [14] Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 [15] E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209 [16] Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 [17] Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 [18] Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 [19] Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 [20] Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

2018 Impact Factor: 0.925