• Previous Article
    Liouville results for fully nonlinear integral elliptic equations in exterior domains
  • CPAA Home
  • This Issue
  • Next Article
    The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas
January  2018, 17(1): 113-125. doi: 10.3934/cpaa.2018007

Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent

School of mathematics and statistics, Wuhan University, Wuhan, 430072, China

* Corresponding author

Received  January 2017 Revised  July 2017 Published  September 2017

Fund Project: The authors are supported by NSFC grants 11371282 and 11571259

This paper is concerned with the existence and multiplicity of solutions to the following Kirchhoff type elliptic equations with critical nonlinearity:
$ \begin{cases} -(a+b \int_{Ω}|\nabla u|^{2}dx)Δ u=f(x, u)+μ|u|^{4}u &\; \; \mbox{in }Ω, \\ u=0 &\; \; \mbox{on }\partial Ω, \end{cases}$
where $Ω\subset\mathbb{R}^3$ is a bounded smooth domain, $μ$ is a positive parameter and $f:Ω×\mathbb{R}\to \mathbb{R}$ is a Carathéodory function satisfying some further conditions. Our approach is based on concentration-compactness principle and symmetry mountain pass theorem.
Citation: Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 41 (1973), 349-381. Google Scholar

[2]

C. O. AlvesF. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

C. O. AlvesF. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 23 (2010), 409-417. doi: 10.7153/dea-02-25. Google Scholar

[4]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[5]

G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853-868. Google Scholar

[6]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. doi: 10.1016/j.jmaa.2012.12.053. Google Scholar

[7]

C. Heil, A Basis Theory Primer Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser, New York, 2011. doi: 10.1007/978-0-8176-4687-5. Google Scholar

[8]

X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407-1414. doi: 10.1016/j.na.2008.02.021. Google Scholar

[9] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar
[10]

J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Development in Continuum Mechanics and Partial Differential Equations, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346. Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. doi: 10.4171/RMI/6. Google Scholar

[12]

Z. LiangF. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006. Google Scholar

[13]

A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. doi: 10.1016/j.na.2008.02.011. Google Scholar

[14]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914. doi: 10.1007/s00030-014-0271-4. Google Scholar

[15]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[16]

E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 341-358. doi: 10.1016/S0294-1449(02)00013-6. Google Scholar

[17]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222. doi: 10.1016/j.na.2010.09.061. Google Scholar

[18]

Q. L. XieX. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. doi: 10.3934/cpaa.2013.12.2773. Google Scholar

[19]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 41 (1973), 349-381. Google Scholar

[2]

C. O. AlvesF. J. S. A. Corra and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

C. O. AlvesF. J. S. A. Corra and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 23 (2010), 409-417. doi: 10.7153/dea-02-25. Google Scholar

[4]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[5]

G. M. Figueiredo and J. R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25 (2012), 853-868. Google Scholar

[6]

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. doi: 10.1016/j.jmaa.2012.12.053. Google Scholar

[7]

C. Heil, A Basis Theory Primer Expanded edition, Applied and Numerical Harmonic Analysis, Birkhäuser, New York, 2011. doi: 10.1007/978-0-8176-4687-5. Google Scholar

[8]

X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff type problems, Nonlinear Anal., 70 (2009), 1407-1414. doi: 10.1016/j.na.2008.02.021. Google Scholar

[9] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar
[10]

J. L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Development in Continuum Mechanics and Partial Differential Equations, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978, pp. 284-346. Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 1, Rev. Mat. Iberoamericana, 1 (1985), 145-201. doi: 10.4171/RMI/6. Google Scholar

[12]

Z. LiangF. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006. Google Scholar

[13]

A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275-1287. doi: 10.1016/j.na.2008.02.011. Google Scholar

[14]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914. doi: 10.1007/s00030-014-0271-4. Google Scholar

[15]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[16]

E. A. B. Silva and M. S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 341-358. doi: 10.1016/S0294-1449(02)00013-6. Google Scholar

[17]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222. doi: 10.1016/j.na.2010.09.061. Google Scholar

[18]

Q. L. XieX. P. Wu and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. doi: 10.3934/cpaa.2013.12.2773. Google Scholar

[19]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[1]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[2]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[3]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[4]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[5]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[6]

Mamoru Okamoto. Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity. Evolution Equations & Control Theory, 2019, 8 (3) : 567-601. doi: 10.3934/eect.2019027

[7]

Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451

[8]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[9]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[10]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[11]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[12]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[13]

Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351

[14]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[15]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[16]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[17]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[18]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[19]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[20]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (51)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]