• Previous Article
    Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp
  • CPAA Home
  • This Issue
  • Next Article
    Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions
November  2017, 16(6): 2337-2355. doi: 10.3934/cpaa.2017115

Dynamics of a Class of ODEs via Wavelets

1. 

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668,13560-970, São Carlos, SP, Brazil

2. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Tarfia s/n, 41012-Sevilla, Spain

Received  December 2016 Revised  March 2017 Published  July 2017

Fund Project: H.R. was partially supported by FAPESP grant 2015/19165-5. T.C. was partially supported by the projects MTM2015-63723-P (MINECO/ FEDER, EU) and P12-FQM-1492 (Junta de Andalucía). M.G. was partially supported by FAPESP grants 2013/07460-7,2016/08704-5, and 2016/21032-6, and by CNPq grants 305860/2013-5 and 310740/2016-9, Brazil

The objective of this paper is to study a perturbed linear hyperbolic differential equation. The first part of this work is dedicated to study perturbation of the equilibrium (special solution) of a perturbed hyperbolic system. On the second part we analyze the stable and the unstable manifolds of a perturbed semilinear differential equation. We assume that the perturbed forcing function belongs to an $L_2$ class and that it is developed in a series of wavelets. Then we analyze the effect of this development on the special solution of the perturbed equation. Similar study is provided for the stable and unstable manifolds of this special solutions.

Citation: Hildebrando M. Rodrigues, Tomás Caraballo, Marcio Gameiro. Dynamics of a Class of ODEs via Wavelets. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2337-2355. doi: 10.3934/cpaa.2017115
References:
[1]

G. Bachman and L. Narici, Functional Analysis, Academic Press, New York, 1966.

[2]

T. Gnana BhaskarS. Hariharan and N. Nataraj, Heatlet approach to diffusion equation on unbounded domains, Applied Mathematics and Computation, 197 (2008), 891-903. doi: 10.1016/j.amc.2007.08.060.

[3]

T. CaraballoR. Colucci and X. Han, Non-autonomous dynamics of a semi-Kolmogorov population model with periodic forcing, Nonlinear Anal. Real World Appl., 31 (2016), 661-680. doi: 10.1016/j.nonrwa.2016.03.007.

[4]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer International Publishing, 2016. doi: 10.1007/978-3-319-49247-6.

[5]

T. CaraballoX. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199. doi: 10.1137/14099930X.

[6]

T. CaraballoG. Ł ukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[7]

W. A. Coppel, Almost periodic properties of ordinary differential equations, Anal. Mat. Pura Appl., 76 (1967), 27-49. doi: 10.1007/BF02412227.

[8]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D-. C. Heath & Co. , Boston, 1965.

[9]

I. C. Daubechies and A. C. Gilbert, Harmonic Analysis, Wavelets and Applications, Proceedings of the IEEE. 84 (1996). doi: 10.1006/acha.1997.0234.

[10]

J. K. Hale, Ordinary Differential Equations, Second Edition, Krieger Publishing Co. , Huntington, New York, 1980.

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes Math. , Vol. 840, Springer-Verlag, Berlin, 1981.

[12]

E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press LLC, 1996. doi: 10.1201/9781420049985.

[13]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stochastics & Dynamics, 3 (2003), 101-112. doi: 10.1142/S0219493703000632.

[14]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, volume 176 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[15]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Analysis, 74 (2011), 2695-2719. doi: 10.1016/j.na.2010.12.025.

[16]

S. Mallat, A Wavelet Tour of Signal Processing Academic Press, 1998.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

J. Shen and G. Strang, On wavelets fundamental solutions to the heat equation, J. of Differential Equations, 161 (2000), 403-421. doi: 10.1006/jdeq.1999.3707.

[19]

B. Vidakovic and P. Mueller, Wavelets for Kids. A Tutorial Introduction Duke University. http://www2.isye.gatech.edu/~brani/wp/kidsA.pdf.

show all references

References:
[1]

G. Bachman and L. Narici, Functional Analysis, Academic Press, New York, 1966.

[2]

T. Gnana BhaskarS. Hariharan and N. Nataraj, Heatlet approach to diffusion equation on unbounded domains, Applied Mathematics and Computation, 197 (2008), 891-903. doi: 10.1016/j.amc.2007.08.060.

[3]

T. CaraballoR. Colucci and X. Han, Non-autonomous dynamics of a semi-Kolmogorov population model with periodic forcing, Nonlinear Anal. Real World Appl., 31 (2016), 661-680. doi: 10.1016/j.nonrwa.2016.03.007.

[4]

T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer International Publishing, 2016. doi: 10.1007/978-3-319-49247-6.

[5]

T. CaraballoX. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199. doi: 10.1137/14099930X.

[6]

T. CaraballoG. Ł ukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[7]

W. A. Coppel, Almost periodic properties of ordinary differential equations, Anal. Mat. Pura Appl., 76 (1967), 27-49. doi: 10.1007/BF02412227.

[8]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D-. C. Heath & Co. , Boston, 1965.

[9]

I. C. Daubechies and A. C. Gilbert, Harmonic Analysis, Wavelets and Applications, Proceedings of the IEEE. 84 (1996). doi: 10.1006/acha.1997.0234.

[10]

J. K. Hale, Ordinary Differential Equations, Second Edition, Krieger Publishing Co. , Huntington, New York, 1980.

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes Math. , Vol. 840, Springer-Verlag, Berlin, 1981.

[12]

E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press LLC, 1996. doi: 10.1201/9781420049985.

[13]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stochastics & Dynamics, 3 (2003), 101-112. doi: 10.1142/S0219493703000632.

[14]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, volume 176 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011. doi: 10.1090/surv/176.

[15]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Analysis, 74 (2011), 2695-2719. doi: 10.1016/j.na.2010.12.025.

[16]

S. Mallat, A Wavelet Tour of Signal Processing Academic Press, 1998.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1983. doi: 10.1007/978-1-4612-5561-1.

[18]

J. Shen and G. Strang, On wavelets fundamental solutions to the heat equation, J. of Differential Equations, 161 (2000), 403-421. doi: 10.1006/jdeq.1999.3707.

[19]

B. Vidakovic and P. Mueller, Wavelets for Kids. A Tutorial Introduction Duke University. http://www2.isye.gatech.edu/~brani/wp/kidsA.pdf.

Figure 1.  Scaling solution $x_j(t)$ for $j=2$ (red), and $ j=-2$ (green)
Figure 2.  Wavelet solution $y_j(t)$ for $j=1$ (red), and $j=-1$ (green).
[1]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[2]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[3]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

[4]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[5]

Qiao-Fang Lian, Yun-Zhang Li. Reducing subspace frame multiresolution analysis and frame wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 741-756. doi: 10.3934/cpaa.2007.6.741

[6]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[7]

M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385

[8]

Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797

[9]

Jianzhong Wang. Wavelet approach to numerical differentiation of noisy functions. Communications on Pure & Applied Analysis, 2007, 6 (3) : 873-897. doi: 10.3934/cpaa.2007.6.873

[10]

Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443

[11]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[12]

P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure & Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619

[13]

Sohana Jahan, Hou-Duo Qi. Regularized multidimensional scaling with radial basis functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 543-563. doi: 10.3934/jimo.2016.12.543

[14]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[15]

Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404

[16]

Fred Brackx, Hennie De Schepper, Frank Sommen. A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Communications on Pure & Applied Analysis, 2007, 6 (3) : 549-567. doi: 10.3934/cpaa.2007.6.549

[17]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[18]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[19]

V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689

[20]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (4)
  • Cited by (0)

[Back to Top]