November  2017, 16(6): 2023-2045. doi: 10.3934/cpaa.2017099

Two-and multi-phase quadrature surfaces

1. 

Institute of Mathematics National Academy of Sciences of Armenia, 0019 Yerevan, Armenia

2. 

Department of Mathematics Royal Institute of Technology, 100 44 Stockholm, Sweden

3. 

Department of Mathematics, University of Mumbai Vidyanagari, Santacruz (east), 400 097 Mumbai, India

* Corresponding author

Received  September 2016 Revised  December 2016 Published  July 2017

Fund Project: A. Arakelyan was supported by State Committee of Science MES RA, in frame of the research project No. 16YR-1A017. H. Shahgholian is partially supported by the Swedish Research Council

In this paper we shall initiate the study of the two-and multi-phase quadrature surfaces (QS), which amounts to a two/multi-phase free boundary problems of Bernoulli type. The problem is studied mostly from a potential theoretic point of view that (for two-phase case) relates to integral representation
$\int_{\partial Ω^+} g h (x) \ dσ_x - \int_{\partial Ω^-} g h (x) \ dσ_x= \int h dμ \ ,$
where
$dσ_x$
is the surface measure,
$μ= μ^+ - μ^-$
is given measure with support in (a priori unknown domain)
$Ω=Ω^+\cupΩ^-$
,
$g$
is a given smooth positive function, and the integral holds for all functions
$h$
, which are harmonic on
$\overline Ω$
.
Our approach is based on minimization of the corresponding two-and multi-phase functional and the use of its one-phase version as a barrier. We prove several results concerning existence, qualitative behavior, and regularity theory for solutions. A central result in our study states that three or more junction points do not appear.
Citation: Avetik Arakelyan, Henrik Shahgholian, Jyotshana V. Prajapat. Two-and multi-phase quadrature surfaces. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2023-2045. doi: 10.3934/cpaa.2017099
References:
[1]

H. W. AltL. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Transactions of the American Mathematical Society, 282 (1984), 431-461. doi: 10.2307/1999245.

[2]

H. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary., J. Reine Angew. Math., 325 (1981), 105-144.

[3]

J. Andersson, H. Shahgholian and G. S. Weiss, In preparation.

[4]

A. Arakelyan and H. Shahgholian, Multi-phase quadrature domains and a related minimization problem, Potential Analysis, 45 (2016), 135-155. doi: 10.1007/s11118-016-9539-0.

[5]

F. Bahrami and A. Chademan, Existence of unbounded quadrature domains for the p-laplace operator, Bulletin of Iranian Mathematical Society, 24 (1998), 1-13.

[6]

D. Bucur and B. Velichkov, Multiphase shape optimization problems, SIAM Journal on Control and Optimization, 52 (2014), 3556-3591. doi: 10.1137/130917272.

[7]

L. A. CaffarelliD. Jerison and C. E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Annals of Mathematics, 155 (2002), 369-404. doi: 10.2307/3062121.

[8]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815. doi: 10.1512/iumj.2005.54.2506.

[9]

G. David, M. Filoche, D. Jerison and S. Mayboroda, A free boundary problem for the localization of eigenfunctions, arXiv preprint arXiv: 1406.6596.

[10]

P. J. Davis, The Schwarz Function and Its Applications Carus mathematical monographs, Mathematical Association of America, 1974,

[11]

B. EmamizadehJ. V. Prajapat and H. Shahgholian, A two phase free boundary problem related to quadrature domains, Potential Analysis, 34 (2011), 119-138. doi: 10.1007/s11118-010-9184-y.

[12]

A. Friedman and D. Phillips, The free boundary of a semilinear elliptic equation, Transactions of the American Mathematical Society, 282 (1984), 153-182. doi: 10.2307/1999583.

[13]

B. Gustafsson and H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., 473 (1996), 137-179.

[14]

L. HauswirthF. Hélein and F. Pacard, On an overdetermined elliptic problem, Pacific Journal of Mathematics, 250 (2011), 319-334. doi: 10.2140/pjm.2011.250.319.

[15]

A. Henrot, Subsolutions and supersolutions in a free boundary problem, Arkiv för Matematik, 32 (1994), 79-98. doi: 10.1007/BF02559524.

[16]

L. Karp, On null quadrature domains, Computational Methods and Function Theory, 8 (2008), 57-72. doi: 10.1007/BF03321670.

[17]

J. L. Lewis and A. Vogel, On pseudospheres, Rev. Mat. Iberoamericana, 7 (1991), 25-54. doi: 10.4171/RMI/104.

[18]

J. Mossino, Inögalitös isopörimötriques et applications en physique vol. 2, Editions Hermann, 1984.

[19]

M. Onodera, Geometric flows for quadrature identities, Mathematische Annalen, 361 (2015), 77-106. doi: 10.1007/s00208-014-1062-2.

[20]

M. Sakai, Quadrature Domains vol. 934 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1982.

[21]

H. Shahgholian, Existence of quadrature surfaces for positive measures with finite support, Potential Analysis, 3 (1994), 245-255. doi: 10.1007/BF01053435.

[22]

H. Shahgholian, Quadrature surfaces as free boundaries, Arkiv för Matematik, 32 (1994), 475-492. doi: 10.1007/BF02559582.

[23]

M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, Geometric and Functional Analysis, 24 (2014), 690-720. doi: 10.1007/s00039-014-0268-5.

[24]

B. Velichkov, A note on the monotonicity formula of caffarelli-jerison-kenig Preprint available at: http://cvgmt.sns.it/paper/2266. doi: 10.4171/RLM/673.

show all references

References:
[1]

H. W. AltL. A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Transactions of the American Mathematical Society, 282 (1984), 431-461. doi: 10.2307/1999245.

[2]

H. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary., J. Reine Angew. Math., 325 (1981), 105-144.

[3]

J. Andersson, H. Shahgholian and G. S. Weiss, In preparation.

[4]

A. Arakelyan and H. Shahgholian, Multi-phase quadrature domains and a related minimization problem, Potential Analysis, 45 (2016), 135-155. doi: 10.1007/s11118-016-9539-0.

[5]

F. Bahrami and A. Chademan, Existence of unbounded quadrature domains for the p-laplace operator, Bulletin of Iranian Mathematical Society, 24 (1998), 1-13.

[6]

D. Bucur and B. Velichkov, Multiphase shape optimization problems, SIAM Journal on Control and Optimization, 52 (2014), 3556-3591. doi: 10.1137/130917272.

[7]

L. A. CaffarelliD. Jerison and C. E. Kenig, Some new monotonicity theorems with applications to free boundary problems, Annals of Mathematics, 155 (2002), 369-404. doi: 10.2307/3062121.

[8]

M. ContiS. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815. doi: 10.1512/iumj.2005.54.2506.

[9]

G. David, M. Filoche, D. Jerison and S. Mayboroda, A free boundary problem for the localization of eigenfunctions, arXiv preprint arXiv: 1406.6596.

[10]

P. J. Davis, The Schwarz Function and Its Applications Carus mathematical monographs, Mathematical Association of America, 1974,

[11]

B. EmamizadehJ. V. Prajapat and H. Shahgholian, A two phase free boundary problem related to quadrature domains, Potential Analysis, 34 (2011), 119-138. doi: 10.1007/s11118-010-9184-y.

[12]

A. Friedman and D. Phillips, The free boundary of a semilinear elliptic equation, Transactions of the American Mathematical Society, 282 (1984), 153-182. doi: 10.2307/1999583.

[13]

B. Gustafsson and H. Shahgholian, Existence and geometric properties of solutions of a free boundary problem in potential theory, J. Reine Angew. Math., 473 (1996), 137-179.

[14]

L. HauswirthF. Hélein and F. Pacard, On an overdetermined elliptic problem, Pacific Journal of Mathematics, 250 (2011), 319-334. doi: 10.2140/pjm.2011.250.319.

[15]

A. Henrot, Subsolutions and supersolutions in a free boundary problem, Arkiv för Matematik, 32 (1994), 79-98. doi: 10.1007/BF02559524.

[16]

L. Karp, On null quadrature domains, Computational Methods and Function Theory, 8 (2008), 57-72. doi: 10.1007/BF03321670.

[17]

J. L. Lewis and A. Vogel, On pseudospheres, Rev. Mat. Iberoamericana, 7 (1991), 25-54. doi: 10.4171/RMI/104.

[18]

J. Mossino, Inögalitös isopörimötriques et applications en physique vol. 2, Editions Hermann, 1984.

[19]

M. Onodera, Geometric flows for quadrature identities, Mathematische Annalen, 361 (2015), 77-106. doi: 10.1007/s00208-014-1062-2.

[20]

M. Sakai, Quadrature Domains vol. 934 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1982.

[21]

H. Shahgholian, Existence of quadrature surfaces for positive measures with finite support, Potential Analysis, 3 (1994), 245-255. doi: 10.1007/BF01053435.

[22]

H. Shahgholian, Quadrature surfaces as free boundaries, Arkiv för Matematik, 32 (1994), 475-492. doi: 10.1007/BF02559582.

[23]

M. Traizet, Classification of the solutions to an overdetermined elliptic problem in the plane, Geometric and Functional Analysis, 24 (2014), 690-720. doi: 10.1007/s00039-014-0268-5.

[24]

B. Velichkov, A note on the monotonicity formula of caffarelli-jerison-kenig Preprint available at: http://cvgmt.sns.it/paper/2266. doi: 10.4171/RLM/673.

[1]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019239

[2]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673

[3]

Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365

[4]

Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713

[5]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

[6]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[7]

Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379

[8]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[9]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[10]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[11]

Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019238

[12]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[13]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[14]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[15]

Jie Jiang, Yinghua Li, Chun Liu. Two-phase incompressible flows with variable density: An energetic variational approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3243-3284. doi: 10.3934/dcds.2017138

[16]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[17]

Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203

[18]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[19]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[20]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (18)
  • HTML views (17)
  • Cited by (0)

[Back to Top]