November  2017, 16(6): 1941-1955. doi: 10.3934/cpaa.2017095

On a class of rotationally symmetric $p$-harmonic maps

1. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

2. 

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424, Taiwan

3. 

Department of Mathematics, National University of Singapore, Singapore 119260, Singapore

Received  October 2014 Revised  March 2017 Published  July 2017

We give a classification of rotationally symmetric $p$-harmonic maps between some model spaces such as $\mathbb{R}^n$ and $\mathbb{H}^n$ by their asymptotic behaviors. Among others, we show that, when $p>2$ and $n≥q 2$, all rotationally symmetric $p$-harmonic maps from $\mathbb{R}^n$ to $\mathbb{H}^n$ have to blow up at a finite point, while all rotationally symmetric $p$-harmonic maps from $\mathbb{H}^n$ to $\mathbb{H}^n$ observe the trichotomy property, i.e. the map $y$ is the identity map, is bounded or blows up according as its initial value $y'(0)$ is equal to, less than or greater than one. Our sharp estimates imply and improve a number of existence and non-existence results of certain $p$-harmonic maps on noncompact manifolds.

Citation: L. F. Cheung, C. K. Law, M. C. Leung. On a class of rotationally symmetric $p$-harmonic maps. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1941-1955. doi: 10.3934/cpaa.2017095
References:
[1]

C. N. ChenL. F. CheungY. S. Choi and C. K. Law, On the blowup of heat flow for conformal 3-harmonic maps, Trans. Amer. Math. Soc., 354 (2002), 5087-5110. doi: 10.1090/S0002-9947-02-03054-4.

[2]

C. N. ChenL. F. CheungY. S. Choi and C. K. Law, Integrability of rotationally symmetric $n$-harmonic maps, J. Math. Anal. Appl., 327 (2007), 869-877. doi: 10.1016/j.jmaa.2006.04.073.

[3]

Y. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35. doi: 10.1007/BF02571698.

[4]

L. F. Cheung and C. K. Law, An initial value approach to rotationally symmetric harmonic maps, J. Math. Anal. Appl., 289 (2004), 1-13. doi: 10.1016/S0022-247X(03)00195-1.

[5]

L. F. CheungC. K. Law and M. C. Leung, Bounded positive solutions of rotationally symmetric harmonic map equations, Diff. Integral Equations, 13 (2000), 1149-1188.

[6]

L. F. CheungC. K. LawM. C. Leung and J. B. McLeod, Entire solutions of quasilinear differential equations corresponding to p-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 701-715. doi: 10.1016/S0362-546X(97)00434-3.

[7]

R. Dal PassoL. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Cal. Var. P.D.E., 32 (2008), 533-554. doi: 10.1007/s00526-007-0153-2.

[8]

A. Fardoun and R. Regbaoui, Heat flow for $p$-harmoic maps with small initial data, Cal. Var., P.D.E., 16 (2003), 1-16. doi: 10.1007/s005260100138.

[9]

R. Greene and H. Wu, Function Theory on Manifolds Which Possess a Pole Lecture Notes in Math. 699 (1970), Springer-Verlag.

[10]

R. G. Iagar and S. Moll, Rotationally symmetric $p$-harmonic maps from $D^2$ to $S^2$, J. Differential Equations, 254 (2013), 3928-3956. doi: 10.1016/j.jde.2013.02.003.

[11]

M. C. Leung, Asymptotic behavior of rotationally symmetric $p$-harmonic maps, Applicable Anal., 61 (1996), 1-15. doi: 10.1080/00036819608840440.

[12]

M. C. Leung, Positive solutions of second order quasilinear equations corresponding to $p$-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 717-733. doi: 10.1016/S0362-546X(97)00435-5.

[13]

M. Misawa, On the $p$-harmonic flow into spheres in the singular case, Nonlinear Anal., 50 (2002), 485-494. doi: 10.1016/S0362-546X(01)00755-6.

[14]

A. Ratto and M. Rigoli, On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Diff. Eqns., 101 (1993), 15--27. doi: 10.1006/jdeq.1993.1002.

show all references

References:
[1]

C. N. ChenL. F. CheungY. S. Choi and C. K. Law, On the blowup of heat flow for conformal 3-harmonic maps, Trans. Amer. Math. Soc., 354 (2002), 5087-5110. doi: 10.1090/S0002-9947-02-03054-4.

[2]

C. N. ChenL. F. CheungY. S. Choi and C. K. Law, Integrability of rotationally symmetric $n$-harmonic maps, J. Math. Anal. Appl., 327 (2007), 869-877. doi: 10.1016/j.jmaa.2006.04.073.

[3]

Y. ChenM. C. Hong and N. Hungerbühler, Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35. doi: 10.1007/BF02571698.

[4]

L. F. Cheung and C. K. Law, An initial value approach to rotationally symmetric harmonic maps, J. Math. Anal. Appl., 289 (2004), 1-13. doi: 10.1016/S0022-247X(03)00195-1.

[5]

L. F. CheungC. K. Law and M. C. Leung, Bounded positive solutions of rotationally symmetric harmonic map equations, Diff. Integral Equations, 13 (2000), 1149-1188.

[6]

L. F. CheungC. K. LawM. C. Leung and J. B. McLeod, Entire solutions of quasilinear differential equations corresponding to p-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 701-715. doi: 10.1016/S0362-546X(97)00434-3.

[7]

R. Dal PassoL. Giacomelli and S. Moll, Rotationally symmetric 1-harmonic maps from $D^2$ to $S^2$, Cal. Var. P.D.E., 32 (2008), 533-554. doi: 10.1007/s00526-007-0153-2.

[8]

A. Fardoun and R. Regbaoui, Heat flow for $p$-harmoic maps with small initial data, Cal. Var., P.D.E., 16 (2003), 1-16. doi: 10.1007/s005260100138.

[9]

R. Greene and H. Wu, Function Theory on Manifolds Which Possess a Pole Lecture Notes in Math. 699 (1970), Springer-Verlag.

[10]

R. G. Iagar and S. Moll, Rotationally symmetric $p$-harmonic maps from $D^2$ to $S^2$, J. Differential Equations, 254 (2013), 3928-3956. doi: 10.1016/j.jde.2013.02.003.

[11]

M. C. Leung, Asymptotic behavior of rotationally symmetric $p$-harmonic maps, Applicable Anal., 61 (1996), 1-15. doi: 10.1080/00036819608840440.

[12]

M. C. Leung, Positive solutions of second order quasilinear equations corresponding to $p$-harmonic maps, Nonlinear Anal. T.M.A., 31 (1998), 717-733. doi: 10.1016/S0362-546X(97)00435-5.

[13]

M. Misawa, On the $p$-harmonic flow into spheres in the singular case, Nonlinear Anal., 50 (2002), 485-494. doi: 10.1016/S0362-546X(01)00755-6.

[14]

A. Ratto and M. Rigoli, On the asymptotic behaviour of rotationally symmetric harmonic maps, J. Diff. Eqns., 101 (1993), 15--27. doi: 10.1006/jdeq.1993.1002.

[1]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[2]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[3]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[4]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[5]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[6]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[7]

Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483

[8]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[9]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[10]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[11]

Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure & Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121

[12]

Vincent Millot, Yannick Sire, Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6195-6214. doi: 10.3934/dcds.2018266

[13]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[14]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[15]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[16]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[17]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[18]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[19]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[20]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]