# American Institute of Mathematical Sciences

• Previous Article
Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case
• CPAA Home
• This Issue
• Next Article
Global dynamics of a microorganism flocculation model with time delay
September  2017, 16(5): 1893-1914. doi: 10.3934/cpaa.2017092

## Dynamics of some stochastic chemostat models with multiplicative noise

 Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n. Sevilla, 41012, Spain

* Corresponding author: caraball@us.es

Received  August 2016 Revised  March 2017 Published  May 2017

Fund Project: Partially supported by FEDER and Ministerio de Economía y Competitividad under grant MTM2015-63723-P and Junta de Andalucía under Proyecto de Excelencia P12-FQM-1492.

In this paper we study two stochastic chemostat models, with and without wall growth, driven by a white noise. Specifically, we analyze the existence and uniqueness of solutions for these models, as well as the existence of the random attractor associated to the random dynamical system generated by the solution. The analysis will be carried out by means of the well-known Ornstein-Uhlenbeck process, that allows us to transform our stochastic chemostat models into random ones.

Citation: T. Caraballo, M. J. Garrido-Atienza, J. López-de-la-Cruz. Dynamics of some stochastic chemostat models with multiplicative noise. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1893-1914. doi: 10.3934/cpaa.2017092
##### References:

show all references

##### References:
Stochastic chemostat without wall growth. Values of parameters: $S_0=5$, $x_0=10$, $S^0=1$, $D=2$, $a=0.6$, $m=1$, $\alpha=0.2$ (left) and $\alpha= 0.5$ (right)
Stochastic chemostat without wall growth. Values of parameters: $S_0=5$, $x_0=10$, $S^0=1$, $D=2$, $a=0.6$, $m=5$, $\alpha=0.2$ (left) and $\alpha= 0.5$ (right)
Stochastic chemostat with wall growth. Values of parameters: $S_0=5$, $x_{01}=10$, $x_{02}=10$, $S^0=1$, $D=2$, $a=0.6$, $m=5$, $b=0.5$, $r_1=0.2$, $r_2=0.8$, $\nu=1.2$, $c=1$, $\alpha=0.2$
Stochastic chemostat with wall growth. Values of parameters: $S_0=5$, $x_{01}=10$, $x_{02}=10$, $S^0=1$, $D=2$, $a=0.6$, $m=5$, $b=0.5$, $r_1=0.2$, $r_2=0.8$, $\nu=1.2$, $c=1$, $\alpha=0.5$
Stochastic chemostat with wall growth. Values of parameters: $S_0=5$, $x_{01}=10$, $x_{02}=10$, $S^0=1$, $D=2$, $a=0.6$, $m=5$, $b=0.5$, $r_1=0.2$, $r_2=0.8$, $\nu=0.3$, $c=3$, $\alpha=0.2$
Stochastic chemostat with wall growth. Values of parameters: $S_0=5$, $x_{01}=10$, $x_{02}=10$, $S^0=1$, $D=2$, $a=0.6$, $m=5$, $b=0.5$, $r_1=0.2$, $r_2=0.8$, $\nu=0.3$, $c=3$, $\alpha=0.5$
Internal structure of the random attractor -Random chemostat model with wall growth
 ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE Case A: $b\nu c_\xi-m\geq 0$ (A-1) $\,\,\nu+\frac{\alpha^2}{2}>c$ $\displaystyle{\lim_{t\to\infty}\sigma(t)\geq S^0D\rho^*_\sigma(\omega)-\varepsilon }$ $\displaystyle{\lim_{t\to\infty}\kappa(t)\leq \varepsilon }$ (A-2) $\,\, \nu+\frac{\alpha^2}{2}c$ $\displaystyle{\lim_{t\to\infty}\sigma(t)\geq S^0D\rho^*_\sigma(\omega)-\varepsilon }$ $\displaystyle{\lim_{t\to\infty}\kappa(t)\leq \varepsilon }$ (B-2) $\,\, \nu+\frac{\alpha^2}{2}  ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE Case A:$ b\nu c_\xi-m\geq 0$(A-1)$\,\,\nu+\frac{\alpha^2}{2}>c \displaystyle{\lim_{t\to\infty}\sigma(t)\geq S^0D\rho^*_\sigma(\omega)-\varepsilon }\displaystyle{\lim_{t\to\infty}\kappa(t)\leq \varepsilon }$(A-2)$\,\, \nu+\frac{\alpha^2}{2}c \displaystyle{\lim_{t\to\infty}\sigma(t)\geq S^0D\rho^*_\sigma(\omega)-\varepsilon }\displaystyle{\lim_{t\to\infty}\kappa(t)\leq \varepsilon }$(B-2)$\,\, \nu+\frac{\alpha^2}{2}
Internal structure of the random attractor -Stochastic chemostat model with wall growth
 ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE Case A: $b\nu c_\xi-m\geq 0$ (A-1) $\,\,\nu+\frac{\alpha^2}{2}>c$ $\displaystyle{\lim_{t\to\infty}S(t)\geq S^0D\rho^*_\sigma(\omega)e^{-\alpha z^*(\omega)}-\varepsilon }$ $\displaystyle{\lim_{t\to\infty}\left[x_1(t)+x_2(t)\right]\leq \varepsilon }$ (A-2) $\,\, \nu+\frac{\alpha^2}{2}c$ $\displaystyle{\lim_{t\to\infty}S(t)\geq S^0D\rho^*_\sigma(\omega)e^{-\alpha z^*(\omega)}-\varepsilon }$ $\displaystyle{\lim_{t\to\infty}\left[x_1(t)+x_2(t)\right]\leq \varepsilon }$ (B-2) $\,\, \nu+\frac{\alpha^2}{2}  ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE Case A:$ b\nu c_\xi-m\geq 0$(A-1)$\,\,\nu+\frac{\alpha^2}{2}>c \displaystyle{\lim_{t\to\infty}S(t)\geq S^0D\rho^*_\sigma(\omega)e^{-\alpha z^*(\omega)}-\varepsilon }\displaystyle{\lim_{t\to\infty}\left[x_1(t)+x_2(t)\right]\leq \varepsilon }$(A-2)$\,\, \nu+\frac{\alpha^2}{2}c \displaystyle{\lim_{t\to\infty}S(t)\geq S^0D\rho^*_\sigma(\omega)e^{-\alpha z^*(\omega)}-\varepsilon }\displaystyle{\lim_{t\to\infty}\left[x_1(t)+x_2(t)\right]\leq \varepsilon }$(B-2)$\,\, \nu+\frac{\alpha^2}{2}
 [1] Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269 [2] Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1 [3] Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 [4] Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120 [5] Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038 [6] Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056 [7] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 [8] María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 [9] Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715 [10] Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1 [11] Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727 [12] Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103 [13] Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 [14] Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 [15] Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355 [16] Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1 [17] Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326 [18] Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301 [19] Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277 [20] Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

2018 Impact Factor: 0.925