# American Institute of Mathematical Sciences

September  2017, 16(5): 1741-1766. doi: 10.3934/cpaa.2017085

## Semilinear nonlocal elliptic equations with critical and supercritical exponents

 Department of Mathematics, Indian Institute of Science Education and Research, Dr. Homi Bhaba Road, Pune-411008, India

* Corresponding author : Mousomi Bhakta

Received  October 2016 Revised  April 2017 Published  May 2017

Fund Project: The first author is supported by the INSPIRE research grant DST/INSPIRE 04/2013/000152 and the second author is supported by the NBHM grant 2/39(12)/2014/RD-Ⅱ

We study the problem
 \left\{ \begin{align} &{{(-\Delta lta )}^{s}}u={{u}^{p}}-{{u}^{q}}\ \text{in}\ \text{ }{{\mathbb{R}}^{N}}, \\ &u\in {{{\dot{H}}}^{s}}({{\mathbb{R}}^{N}})\cap {{L}^{q+1}}({{\mathbb{R}}^{N}}), \\ &u>0\ \ \text{in}\ \ {{\mathbb{R}}^{N}}, \\ \end{align} \right.
where
 $s∈(0,1)$
is a fixed parameter,
 $(-Δ)^s$
is the fractional Laplacian in
 $\mathbb{R}^N$
,
 $q>p≥q \frac{N+2s}{N-2s}$
and
 $N>2s$
. For every
 $s∈(0,1)$
, we establish regularity results of solutions of above equation (whenever solution exists) and we show that every solution is a classical solution. Next, we derive certain decay estimate of solutions and the gradient of solutions at infinity for all
 $s∈(0,1)$
. Using those decay estimates, we prove Pohozaev type identity in ${{\mathbb{R}}^{N}}$ and we show that the above problem does not have any solution when
 $p=\frac{N+2s}{N-2s}$
. We also discuss radial symmetry and decreasing property of the solution and prove that when
 $p>\frac{N+2s}{N-2s}$
, the above problem admits a solution. Moreover, if we consider the above equation in a bounded domain with Dirichlet boundary condition, we prove that it admits a solution for every
 $p≥q \frac{N+2s}{N-2s}$
and every solution is a classical solution.
Citation: Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085
##### References:
 [1] D. Applebaum, Lévy processes from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. Google Scholar [2] B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Diff. Eqns, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023. Google Scholar [3] M. Bhakta, D. Mukherjee and S. Santra, Profile of solutions for nonlocal equations with critical and supercritical nonlinearities, preprint, arXiv: 1612.01759.Google Scholar [4] M. Bhakta and S. Santra, On a singular equation with critical and supercritical exponents To appear in J. Differential Equations.Google Scholar [5] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175. Google Scholar [6] X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269. doi: 10.1007/s00526-012-0580-6. Google Scholar [7] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025. Google Scholar [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar [9] R. Cont and P. Tankov, Financial Modelling with Jump Processes Vol. 2. CRC press, 2003. doi: 1-5848-8413-4. Google Scholar [10] J. Dávila, L. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc. .Google Scholar [11] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of ${{\mathbb{R}}^{N}}$, preprint, arXiv: 1506.01748.Google Scholar [12] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218. Google Scholar [13] M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227. doi: 10.1016/j.jfa.2012.06.018. Google Scholar [14] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian Commun. Contemp. Math. , 16 (2014), 1350023, 24 pp. . doi: 10.1142/S0219199713500235. Google Scholar [15] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555. doi: 10.1515/ans-2015-0302. Google Scholar [16] S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581. Google Scholar [17] T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part Ⅰ: blow up analysis and compactness of solutions, J. Eur. Math. Soc.(JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456. Google Scholar [18] M. K. Kwong, J. B. Mcleod, L. A. Peletier and W. C. Troy, On ground state solutions of $-\Delta u = u^p - u^q$, J. Differential Equations, 95 (1992), 218-239. doi: 10.1016/0022-0396(92)90030-Q. Google Scholar [19] F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, I. The radial case, Arch. Rational Mech. Anal., 112 (1990), 1-19. doi: 10.1007/BF00431720. Google Scholar [20] F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, Ⅱ. The non-radial case, J. Funct. Anal, 105 (1992), 1-41. doi: 10.1016/0022-1236(92)90070-Y. Google Scholar [21] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.2307/1995882. Google Scholar [22] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [23] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y. Google Scholar [24] Y. J. Park, Fractional Polya-Szego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271. Google Scholar [25] X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033. Google Scholar [26] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl(9), 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. Google Scholar [27] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2. Google Scholar [28] X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133. doi: 10.1080/03605302.2014.918144. Google Scholar [29] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. Google Scholar [30] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc, 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4. Google Scholar [31] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar [32] J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975. Google Scholar [33] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44. Google Scholar [34] L. Vlahos, H. Isliker, K. Kominis and K. Hizonidis, Normal and anomalous diffusion: a tutorial, preprint, arXiv: 0805.0419.Google Scholar

show all references

##### References:
 [1] D. Applebaum, Lévy processes from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347. Google Scholar [2] B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Diff. Eqns, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023. Google Scholar [3] M. Bhakta, D. Mukherjee and S. Santra, Profile of solutions for nonlocal equations with critical and supercritical nonlinearities, preprint, arXiv: 1612.01759.Google Scholar [4] M. Bhakta and S. Santra, On a singular equation with critical and supercritical exponents To appear in J. Differential Equations.Google Scholar [5] C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71. doi: 10.1017/S0308210511000175. Google Scholar [6] X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269. doi: 10.1007/s00526-012-0580-6. Google Scholar [7] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025. Google Scholar [8] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar [9] R. Cont and P. Tankov, Financial Modelling with Jump Processes Vol. 2. CRC press, 2003. doi: 1-5848-8413-4. Google Scholar [10] J. Dávila, L. Dupaigne and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc. .Google Scholar [11] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of ${{\mathbb{R}}^{N}}$, preprint, arXiv: 1506.01748.Google Scholar [12] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116. doi: 10.1080/03605308208820218. Google Scholar [13] M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227. doi: 10.1016/j.jfa.2012.06.018. Google Scholar [14] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian Commun. Contemp. Math. , 16 (2014), 1350023, 24 pp. . doi: 10.1142/S0219199713500235. Google Scholar [15] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555. doi: 10.1515/ans-2015-0302. Google Scholar [16] S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 2581-2615. doi: 10.3934/dcds.2014.34.2581. Google Scholar [17] T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part Ⅰ: blow up analysis and compactness of solutions, J. Eur. Math. Soc.(JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456. Google Scholar [18] M. K. Kwong, J. B. Mcleod, L. A. Peletier and W. C. Troy, On ground state solutions of $-\Delta u = u^p - u^q$, J. Differential Equations, 95 (1992), 218-239. doi: 10.1016/0022-0396(92)90030-Q. Google Scholar [19] F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, I. The radial case, Arch. Rational Mech. Anal., 112 (1990), 1-19. doi: 10.1007/BF00431720. Google Scholar [20] F. Merle and L. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth, Ⅱ. The non-radial case, J. Funct. Anal, 105 (1992), 1-41. doi: 10.1016/0022-1236(92)90070-Y. Google Scholar [21] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. doi: 10.2307/1995882. Google Scholar [22] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [23] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829. doi: 10.1007/s00526-013-0656-y. Google Scholar [24] Y. J. Park, Fractional Polya-Szego inequality, J. Chungcheong Math. Soc., 24 (2011), 267-271. Google Scholar [25] X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033. Google Scholar [26] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl(9), 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. Google Scholar [27] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2. Google Scholar [28] X. Ros-Oton and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40 (2015), 115-133. doi: 10.1080/03605302.2014.918144. Google Scholar [29] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133-154. Google Scholar [30] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc, 367 (2015), 67-102. doi: 10.1090/S0002-9947-2014-05884-4. Google Scholar [31] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032. Google Scholar [32] J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975. Google Scholar [33] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA No., 49 (2009), 33-44. Google Scholar [34] L. Vlahos, H. Isliker, K. Kominis and K. Hizonidis, Normal and anomalous diffusion: a tutorial, preprint, arXiv: 0805.0419.Google Scholar
 [1] Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567 [2] Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283 [3] Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991 [4] Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143 [5] Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 [6] Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095 [7] A. M. Micheletti, Monica Musso, A. Pistoia. Super-position of spikes for a slightly super-critical elliptic equation in $R^N$. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 747-760. doi: 10.3934/dcds.2005.12.747 [8] Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645 [9] Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081 [10] Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231 [11] Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351 [12] Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445 [13] Lorena Bociu, Petronela Radu, Daniel Toundykov. Errata: Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2014, 3 (2) : 349-354. doi: 10.3934/eect.2014.3.349 [14] Lorena Bociu, Petronela Radu, Daniel Toundykov. Regular solutions of wave equations with super-critical sources and exponential-to-logarithmic damping. Evolution Equations & Control Theory, 2013, 2 (2) : 255-279. doi: 10.3934/eect.2013.2.255 [15] Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013 [16] Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 [17] Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 [18] Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 [19] Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 [20] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

2018 Impact Factor: 0.925